
7 コチェイン複体とそのコホモロジー

次のような完全系列は、短完全系列と呼ばれる。

0 !! A
f

!! B
g

!! C !! 0

この系列が完全であることは、次の性質 (i)–(iii)と同値である。

(i) f は単射である。

(ii) im(f) = ker(g)である。

(iii) gは全射である。

ここで、像 im(f)と核 ker(f)は次のように定義される。

im(f) = {f(a) | a ∈ A} ⊂ B

ker(g) = {b ∈ B | g(b) = 0} ⊂ B

補題 7.1. ベクトル空間と線形写像からなる短完全系列

0 !! A
f

!! B
g

!! C !! 0

をおいておく。基底 {ai | i ∈ I} ⊂ Aと {cj | j ∈ J} ⊂ Cに対して、次のように選ばれた部

分集合は、ベクトル空間Bの基底となる。

{f(ai) | i ∈ I} ∪ {bj | j ∈ J} ⊂ B, g(bj) = cj

特に、ベクトル空間AとCが有限次元のとき、ベクトル空間Bも有限次元であり、

dim(B) = dim(A) + dim(C)

である。

証明. まず、ほとんどすべとのはゼロである λi ∈ R（i ∈ I）と µj ∈ R（j ∈ J）に対して、

∑

i∈I

λif(ai) +
∑

j∈J

µjbj = 0
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ならば、任意の λiと µjはゼロであることを示す。まず、

0 = g
(∑

i∈I

λif(ai) +
∑

j∈J

µjbj

)

=
∑

i∈I

λig(f(ai)) +
∑

j∈J

µjg(bj) =
∑

j∈J

µjcj

であることが成り立つ。さらに、{cj | j ∈ J} ⊂ Cは１次独立なので、任意の µjはゼロであ

ることが分かる。よって、

0 =
∑

i∈I

λif(ai) +
∑

j∈J

µjbj = f
(∑

i∈I

λiai

)

であり、写像 f は単射なので、
∑

i∈I

λiai = 0

であることが分かる。しかし、{ai | i ∈ I} ⊂ Aは１次独立なので、任意の λiもゼロである

ことが分かる。よって、{f(ai) | i ∈ I} ∪ {bj | j ∈ J} ⊂ Bは１次独立であることを示した。

最後に、任意の b ∈ Bが {f(ai) | i ∈ I} ∪ {bj | j ∈ J}の線形結合となることを示す。まず、

g(b) =
∑

j∈J

µjcj

と表すことができる。よって、

g
(

b −
∑

j∈J

µjbj

)

= g(b) −
∑

j∈J

µjcj = 0

であることが分かる。それに、ker(g) = im(f)なので、

b −
∑

j∈J

µjbj = f(a) = f
(∑

i∈I

λiai

)

=
∑

i∈I

λif(ai)

と表すことができる。よって、

b =
∑

i∈I

λif(ai) +
∑

j∈J

µjbj

と表すことができる。これで、補題が成り立つ。

例 7.2. 任意の線形写像 f : A → Bに対して、次の短完全系列が成り立つ。

0 !! ker(f) !! A
f

!! im(f) !! 0

特に、Aは有限次元のとき、dim(A) = dim(ker(f)) + dim(im(f))である。
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定義 7.3. コチェイン複体 A∗ = (Ai, di)に対して、次のように定義された商ベクトル空間

Hp(A∗)は、複体A∗の p次コホモロジーベクトル空間と呼ばれる。

Hp(A∗) = ker(dp : Ap → Ap+1)/ im(dp−1 : Ap−1 → Ap)

核 ker(dp : Ap → Ap+1)と像 im(dp−1 : Ap−1 → Ap)の元は、それぞれ複体A∗の p次コサイク

ルと p次コバウンダリーと呼ばれる。p次コホモロジーベクトル空間Hp(A∗)の元は、複体

A∗の p次コホモロジー類と呼ばれ、p次コサイクル aを含むコホモロジー類は、

[a] = a + im(dp−1 : Ap−1 → Ap) ∈ Hp(A∗)

と書かれる。

例 7.4. ド・ラーム複体Ω∗(U)はコチェイン複体であり、そのコホモロジーベクトル空間は、

ド・ラームコホモロジー群と等しいである。

Hp(U) = Hp(Ω∗(U))

それで、複体Ω∗(U)の p次コサイクルと p次コバウンダリーは、それぞれU上の閉微分形式

と完全微分形式と等しいである。

定義 7.5. チェイン写像 ϕ : A∗ → B∗に対して、次のように定義された写像は、ϕで誘導さ

れた写像と呼ばれ、ϕ∗またはHp(ϕ)と書かれる。

ϕ∗ = Hp(ϕ) : Hp(A∗) → Hp(B∗), Hp(f)([a]) = [ϕp(a)]

注 7.6. チェイン写像 ϕ : A∗ → B∗で誘導された写像Hp(ϕ) : Hp(A∗) → Hp(B∗)は、うまく

定義された線形写像であることを示す。まず、複体A∗の p次コサイクル aに対して、

dp(ϕp(a)) = ϕp(dp(a)) = ϕp(0) = 0

なので、φp(a)は複体B∗の p次コサイクルである。さらに、p次コサイクル a1と a2に対し

て、コホモロジー類 [a1]と [a2]が等しいであることと差 a1 − a2が p次コバウンダリーであ

ることは同値である。それに、a1 − a2 = dp−1(x)のとき、

ϕp(a1) − ϕp(a2) = ϕp(a1 − a2) = ϕp(dp−1(x)) = dp(ϕp(x))

なので、コホモロジー類 [ϕp(a1)]と [ϕp(a2)]は等しいであることが分かる。よって、誘導さ

れた写像Hp(ϕ)はうまく定義された写像である。
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定義 7.7. コチェイン複体とチェイン写像からなる系列

0 !! A∗
ϕ

!! B∗
ψ

!! C∗ !! 0

において、任意の iに対して系列

0 !! Ai
ϕi

!! Bi
ψi

!! Ci !! 0

は短完全系列のとき、コチェイン複体の短完全系列と呼ばれる。

補題 7.8. コチェイン複体の短完全系列

0 !! A∗
ϕ

!! B∗
ψ

!! C∗ !! 0

に対して、誘導された写像からなる系列

Hp(A∗)
ϕ∗

!! Hp(B∗)
ψ∗

!! Hp(C∗)

は、完全系列である。

証明. まず、任意のコホモロジー類 [a] ∈ Hp(A∗)に対して、

(ψ∗ ◦ ϕ∗)([a]) = ψ∗(ϕ∗([a])) = ψ∗([ϕp(a)]) = [ψp(ϕp(a)] = [0] = 0

なので、ψ∗ ◦ϕ∗はゼロであることが分かる。よって、任意のコホモロジー類 [b] ∈ Hp(B∗)に

対して、ψ∗([b]) = 0ならば、[b] = ϕ∗([a])を満たすコホモロジー類 [a] ∈ Hp(A∗)が存在するこ

とを示せばよい。コホモロジー類ψ∗([b])はゼロのとき、ψp(b) = dp−1(c)を満たす c ∈ Cp−1が

存在する。それに、写像ψp−1 : Bp−1 → Cp−1は全射なので、ψp−1(b1) = cを満たす b1 ∈ Bp−1

が存在する。それから、

ψp(b − dp−1(b1)) = ψp(b) − ψp(dp−1(b1)) = ψp(b) − dp−1(ψp−1(b1))

= ψp(b) − dp−1(c) = ψp(b) − ψp(b) = 0

なので、ϕp(a) = b − dp−1(b1)を満たす a ∈ Apが存在する。なお、写像 ϕp+1は単射なので、

次の計算から、aはコサイクルであることが成り立つ。

ϕp+1(dp(a)) = dp(ϕp(a)) = dp(b − dp−1(b1)) = dp(b) − (dp ◦ dp−1)(b1) = 0 − 0 = 0

よって、ϕ∗([a]) = [b]を満たすコホモロジー類 [a] ∈ Hp(A∗)が存在する。
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補題 7.8では、誘導された写像 ϕ∗には、一般的に単射ではない。同様に、誘導われた写像

ψ∗には、一般的に全射ではない。よって、誘導された写像からなる系列には、一般的に短完

全系列ではない。

定義 7.9. コチェイン複体の短完全系列

0 !! A∗
ϕ

!! B∗
ψ

!! C∗ !! 0

に関して、境界準同型と呼ばれるのは、次のように定義された写像である。

∂∗ : Hp(C∗) → Hp+1(A∗), ∂∗([c]) = [(φp+1)−1(dp((ψp)−1(c)))]

注 7.10. 次の図式を考え、境界準同型がうまく定義された線形写像であることを示す。

...
...

...

0 !! Ap+2
ϕp+2

!!

""

Bp+2
ψp+2

!!

""

Cp+2 !!

""

0

0 !! Ap+1
ϕp+1

!!

dp+1

""

Bp+2
ψp+1

!!

dp+1

""

Cp+1 !!

dp+1

""

0

0 !! Ap
ϕp

!!

dp

""

Bp
ψp

!!

dp

""

Cp !!

dp

""

0

...

""

...

""

...

""

境界準同型の定義より、p次コサイクル c ∈ Cpが与えられた、まず φp(b) = cを満たす元

b ∈ Bpを選ぶ。このとき、

ψp+1(dp(b)) = dp(ψp(b)) = dp(c) = 0

なので、ϕp+1(a) = dp(b)を満たす元 a ∈ Ap+1が一意的に存在する。さらに、写像ϕp+2は単

射なので、次の計算より、aはコサイクルであることが分かる。

ϕp+2(dp+1(a)) = dp+1(ϕp+1(a)) = dp+1(dp(b)) = 0

よって、コホモロジー類 [a] ∈ Hp+1(A∗)が成り立つ。続いて、このコホモロジー類は、選ん

だ元 b ∈ Bpによらないことを示す。それぞれψp(b1) = cとψp(b2) = cを満たす元 b1, b2 ∈ Bp

とそれぞれ対応するコサイクル a1, a2 ∈ Ap+1をおいておく。このとき、

ψp(b1 − b2) = ψp(b1) − ψp(b2) = 0
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なので、ϕp(a′) = b1 − b2を満たす元 a′ ∈ Apが存在する。さらに、

ϕp+1(dp(a′)) = dp(ϕp(a′)) = dp(b1 − b2) = dp(b1) − dp(b2)

= ϕp+1(a1) − ϕp+1(a2) = ϕp+1(a1 − a2)

なので、dp(a′) = a1 − a2であることが分かる。よって、

[a1] − [a2] = [a1 − a2] = [dp(a′)] = 0

が成り立つ。これで、境界準同型はうまく定義された写像であることを示した。最後に、境

界準同型は線形写像であることを示す。境界準同型の定義より、ψp(b1) = c1と ψp(b2) = c2、

ϕp+1(a1) = dp(b1)、ϕp+1(a2) = dp(b2)を満たす元 b1, b2 ∈ Bp、a1, a2 ∈ Ap+1 において、

∂∗([c1]) = [a1]と ∂∗([c2]) = [a2]である。そらに、ψp(b1 + b2) = c1 + c2と ϕp+1(a1 + a2) =

dp(b1 + b2)なので、∂∗([c1 + c2]) = [a1 + a2]であることも分かる。よって、

∂∗([c1] + [c2]) = ∂∗([c1 + c2]) = [a1 + a2] = [a1] + [a2] = ∂∗([c1]) + ∂∗([c2])

であることが成り立つ。同様に、ψp(λb1) = λc1と ϕp+1(λa1) = dp(λb1)なので、

∂∗(λ[c1]) = ∂∗([λc1]) = [λa1] = λ[a1] = λ∂∗([c1])

であることも成り立つ。これで、境界準同型は線形写像であることを示した。

例 7.11. 次のように定義されたコチェイン複体の短完全系列

0 !! A∗
ϕ

!! B∗
ψ

!! C∗ !! 0

を考えてみる。ここで、A1 = B0 = B1 = C0をRとし、それ以外のAp、Bp、Cpをゼロと

し、写像 ϕ1 : A1 → B1と d0 : B0 → B1、ψ0 : B0 → C0をRの恒道写像と定義する。

...
...

...

0 !! R
id

!!

""

R !!

""

0 !!

""

0

0 !! 0 !!

""

R
id

!!

id

""

R !!

""

0

...

""

...

""

...

""

このとき、∂∗ : H0(C∗) → H1(A∗)もRの恒道写像と等しいである。
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補題 7.12. コチェイン複体の短完全系列

0 !! A∗
ϕ

!! B∗
ψ

!! C∗ !! 0

に対して、次の系列が完全となる。

Hp(B∗)
ψ∗

!! Hp(C∗) ∂∗

!! Hp+1(A∗)

証明. まず、境界準同型の定義より、

∂∗(ψ∗([b])) = [(ϕp+1)−1(dp(b))] = [(ϕp+1)−1(0)] = [0] = 0

であることが分かる。続いて、∂∗([c]) = 0であることと ψp(b) = cを満たす b ∈ Bpに対し

て、dp(b) = ϕp+1(dp(a))を満たす a ∈ Apが存在することは同値である。このとき、

dp(b − ϕp(a)) = dp(b) − dp(ϕp(a)) = dp(b) − ϕp+1(dp(a)) = dp(b) − dp(b) = 0

であり、ψ∗([b − ϕp(a)]) = [c − 0] = [c]が成り立つ。

補題 7.13. コチェイン複体の短完全系列

0 !! A∗
ϕ

!! B∗
ψ

!! C∗ !! 0

に対して、次の系列が完全となる。

Hp(C∗) ∂∗

!! Hp+1(A∗)
ϕ∗

!! Hp+1(B∗)

証明. まず、コサイクル c ∈ Cpに対して、ψp(b) = cを満たす元 b ∈ Bpを選ぶと、

ϕ∗(∂∗([c])) = [dp(b)] = 0

であることが成り立つ。それで、ϕp+1([a]) = 0であることとϕp+1(a) = dp(b)を満たす b ∈ Bp

が存在することは同値であり、

dp(ψp(b)) = ψp+1(dp(b)) = ψp+1(ϕp+1(a)) = 0

なので、[a] = ∂∗([ψp(b)])であることが分かる。

補題 7.8と 7.12、 7.13を合わすと、次の大切な定理が成り立つ。
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定理 7.14. コチェイン複体の短完全系列

0 !! A∗
ϕ

!! B∗
ψ

!! C∗ !! 0

に対して、次の長完全系列が成り立つ。

· · · !! Hp(A∗)
ϕ∗

!! Hp(B∗)
ψ∗

!! Hp(C∗) ∂∗

!! Hp+1(A∗)
ϕ∗

!! Hp+1(B∗) !! · · ·

定義 7.15. 二つのチェイン写像ϕ, ψ : A∗ → B∗に対して、ϕからψへのチェインホモトピー

は、次の性質を満たす線形写像 sp : Ap → Bp−1のものである。

dp−1sp + sp+1dp = ϕp − ψp

補題 7.16. チェイン写像 ϕ, ψ : A∗ → B∗に対して、ϕから ψへのチェインホモトピーが存

在するとき、誘導された写像

ϕ∗, ψ∗ : Hp(A∗) → Hp(B∗)

は等しいである。

証明. コサイクル a ∈ Apにおいて、

(ϕ∗ − ψ∗)([a]) = [ϕp(a) − ψp(a)] = [dp−1sp(a) − sp+1dp(a)] = [dp−1sp(a)] = 0

なので、ϕ∗ = ψ∗であることが成り立つ。

例 7.17. 星形の開集合 U ⊂ Rnに対して、コチェイン複体

0 !! R
η

!! Ω0(U) d
!! Ω1(U) d

!! · · · d
!! Ωn−1(U) d

!! Ωn(U) !! 0

をおいておく。このコチェイン複体に対して、ポアンカレの補題の証明で定義された線形写像

0 !! R
η

!! Ω0(U) d
!!

ε

##!!
!!

!!
!!

!!
Ω1(U) d

!!

s1

$$"""""""""
· · · d

!! Ωn−1(U) d
!! Ωn(U) !!

sn

$$""""
""""""

0

0 !! R
η

!! Ω0(U) d
!! Ω1(U) d

!! · · · d
!! Ωn−1(U) d

!! Ωn(U) !! 0

は、恒道写像からゼロ写像へのチェインホモトピーを定義する。よって、補題 7.16より、

id = 0: Hp(A∗) → Hp(A∗)

であることが成り立つ。これで、Hp(A∗)はゼロであることが分かる。すなわち、コチェイ

ン複体A∗は完全系列である。
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