
9 マイヤー・ビートリス系列

二つのベクトル空間V とW について、その直和V ⊕W とは、順序対 (v, w)（v ∈ V, w ∈ W）

のなすベクトル空間である。直和のベクトル和とスカラー積は、次のように定義される。

(v, w) + (v′, w′) = (v + v′, w + w′)

λ(v, w) = (λv, λw)

例として、次のように定義された写像は、ユークリッド空間RmとRnの直和Rm ⊕Rnから、

ユークリッド空間Rm+nへの同型である。

(

(x1, . . . , xm), (y1, . . . , yn)
)

#→ (x1, . . . , xm, y1, . . . , yn)

一般的に、ベクトル空間 V とW が有限次元のとき、直和 V ⊕ W も有限次元で、

dim(V ⊕ W ) = dim(V ) + dim(W )

が成り立つ。１の分解を使い、次の定理を証明する。

定理 9.1. 開集合 U1, U2 ⊂ Rnと単射 iv : Uv → U1 ∪ U2、jv : U1 ∩ U2 → Uv（v = 1, 2）に対

して、次の短完全系列が成り立つ。

0 !! Ωp(U1 ∪ U2)
(i∗1 ,i∗2)

!! Ωp(U1) ⊕ Ωp(U2)
j∗1−j∗2

!! Ωp(U1 ∩ U2) !! 0

ここで、写像 (i∗1, i
∗
2)と j∗1 − j∗2 は次のように定義された線形写像である。

(i∗1, i
∗

2)(ω) = (i∗1(ω), i∗2(ω)), (j∗1 − j∗2)(ω1, ω2) = j∗1(ω1) − j∗2(ω2)

証明. 部分集合Uv ⊂ Rnが開集合なので、和集合U = U1 ∪ U2 ⊂ Rnと交わりU1 ∩ U2 ⊂ Rn

も開集合となることが分かる。

まず、写像 (i∗1, i
∗
2)は単射であることを示す。微分形式 ω ∈ Ωp(U1 ∪ U2)をおいておき、一意

に ω =
∑

I fI ∧ dxI と表す。それに、例 5.6と定理 5.7より、

i∗v(ω) =
∑

I

(fI ◦ iv) ∧ dxI

なので、(i∗1, i
∗
2)(ω) = 0のとき、任意の Iに対して、fI ◦ i1 = 0と fI ◦ i2 = 0であることが分

かる。しかし、fI ◦ i1 = 0と fI ◦ i2 = 0ならば、fI = 0なので、ω = 0であることが分かる。

よって、写像 (i∗1, i
∗
2)が単射であることを示した。
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次に、im(i∗1, i
∗
2) = ker(j∗1 − j∗2)を示す。まず、i1 ◦ j1 = i2 ◦ j2なので、

((j∗1 − j∗2) ◦ (i∗1, i
∗

2))(ω) = (j∗1 − j∗2)(i
∗

1(ω), i∗2(ω)) = j∗1i
∗

1(ω) − j∗2i
∗

2(ω)

= (i1 ◦ j1)
∗(ω) − (i2 ◦ j2)

∗(ω) = 0

となる。よって、im(i∗1, i
∗
2) ⊂ ker(j∗1 −j∗2)が成り立つ。それで、(j∗1 −j∗2 )(ω1, ω2) = 0を満たす

微分形式 ωv ∈ Ωp(Uv)に対して、(ω1, ω2) = (i∗1, i
∗
2)(ω)を満たす微分形式 ω ∈ Ωp(U1 ∪ U2)が

存在することを示せばよい。微分形式ωv ∈ Ωp(Uv)は、一意に次のように表すことができる。

ω1 =
∑

I

fI ∧ dxI

ω2 =
∑

I

gI ∧ dxI

ここで、fI : U1 → Rと gI : U2 → Rは滑らかな写像である。仮定 j∗1(ω1) = j∗2(ω2)より、

fI ◦ j1 = gI ◦ j2 : U1 ∩ U2 → Rが成り立つ。よって、部分集合U1, U2 ⊂ Rnは開集合なので、

次のように定義された写像 hI : U → Rも滑らかな写像となることが分かる。

hI(x) =








fI(x) (x ∈ U1)

gI(x) (x ∈ U2)

よって、次のように定義された微分形式 ω ∈ Ωp(U)は、うまく定義された微分形式である。

ω =
∑

I

hI ∧ dxI

それに、定義より、望ましい公式 (i∗1, i
∗
2)(ω) = (ω1, ω2)が成り立つ。

最後に、写像 j∗1 − j∗2 は全射であることを示す。部分集合 U1, U2 ⊂ U は、開集合 U の開被

覆 {U1, U2}となるので、１の分解（定理 8.1）より、次の性質 (i)–(ii)を満たす滑らかな写像

φv : U → R（v = 1, 2）が存在することが分かる。

(i) suppU(φv) ⊂ Uv（v = 1, 2）

(ii) 任意の x ∈ U に対して、φ1(x) + φ2(x) = 1

これで、微分形式 ω ∈ Ωp(U1 ∩ U2)が与えられたとき、次の方程式は、うまく定義された微
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分形式 ωv ∈ Ωp(Uv)（v = 1, 2）を与えられる。

ω1(x) =









φ2(x)ω(x) (x ∈ U1 ∩ U2)

0 (x ∈ U1 ! suppU(φ2))

ω2(x) =









−φ1(x)ω(x) (x ∈ U1 ∩ U2)

0 (x ∈ U2 ! suppU(φ1))

それに、任意の x ∈ U1 ∩ U2に対して、

(j∗1 − j∗2)(ω1, ω2)(x) = ω1(x) − ω2(x) = φ2(x)ω(x) − (−φ1(x)ω(x)) = ω(x)

なので、写像 j∗1 − j∗2 が全射であることが分かる。これで、定理が成り立つ。

二つのコチェイン複体A∗とB∗について、その直和A∗ ⊕B∗とは、次のように定義されたコ

チェイン複体である。

· · · !! Ap−1 ⊕ Bp−1 d⊕d
!! Ap ⊕ Bp d⊕d

!! Ap+1 ⊕ Bp+1 d⊕d
!! Ap+2 ⊕ Bp+2 !! · · ·

ここで、d ⊕ dは、(d ⊕ d)(a, b) = (da, db)で定義された写像である。

補題 9.2. コチェイン複体A∗とB∗に対して、([a], [b])を [(a, b)]に移す線形写像

Hp(A∗) ⊕ Hp(B∗) → Hp(A∗ ⊕ B∗)

は、同型である。

証明. コホモロジー類 ([a], [b])をコホモロジー類 [(a, b)]に移す写像は、うまく定義された線

形写像で、逆写像は、コホモロジー類 [(a, b)]をコモロジー類 ([a], [b])に移す写像である。

定理 9.3 (マヤー・ビートリス系列). 開集合 U1, U2 ⊂ Rnと単射 iv : Uv → U = U1 ∪ U2、

jv : U1 ∩ U2 → Uv（v = 1, 2）に対して、次の長完全系列が成り立つ。

· · · !! Hp(U)
(i∗1,i∗2)

!! Hp(U1) ⊕ Hp(U2)
j∗1−j∗2

!! Hp(U1 ∩ U2)
∂∗

!! Hp+1(U) !! · · ·

ここで、写像 (i∗1, i
∗
2)と j∗1 − j∗2 は次のように定義された線形写像である。

(i∗1, i
∗

2)([ω]) = (i∗1([ω]), i∗2([ω])), (j∗1 − j∗2)([ω1], [ω2]) = j∗1([ω1]) − j∗2([ω2])
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証明. 定理は、定理 9.1と定理 7.14、補題 9.2がら成り立つ。

系 9.4. 互いに素な開集合 U1, U2 ⊂ Rnに対して、線形写像

(i∗1, i
∗

2) : Hp(U1 ∪ U2) → Hp(U1) ⊕ Hp(U2)

は同型である。

証明. ド・ラームコホモロジー群の定義より、任意の p ! 0に対して、

Hp(U1 ∩ U2) = Hp(∅) = 0

であることが分かる。よって、マヤー・ビートリス系列から、次のような完全系列が成り立つ。

0 !! Hp(U1 ∪ U2)
(i∗1 ,i∗2)

!! Hp(U1) ⊕ Hp(U2) !! 0

しかし、この系列が完全であることと写像 (i∗1, i
∗
2)が同型であることは同値である。

例 9.5. 開集合 U = R2 ! {0} ⊂ R2のド・ラームコホモロジーベクトル空間を計算する。そ

のために、U を次の開集合 U1, U2 ⊂ U の和集合と表す。

U1 = R
2

! {(x, 0) | x " 0} ⊂ U

U2 = R
2

! {(x, 0) | x ! 0} ⊂ U

の和集合と表し、マヤー・ビートリス系列

· · · !! Hp(U)
(i∗1,i∗2)

!! Hp(U1) ⊕ Hp(U2)
j∗1−j∗2

!! Hp(U1 ∩ U2)
∂∗

!! Hp+1(U) !! · · ·

を考えてみる。ここで、交わり U1 ∩ U2は、次の二つ開集合の和集合と表すことができる。

V1 = {(x, y) ∈ R
2 | y > 0}

V2 = {(x, y) ∈ R
2 | y < 0}

これに、開集合 Uv, Vv（v = 1, 2）は星形なので、ポアンカレの補体と系 9.4より、

Hp(Uv) =









R · 1Uv (p = 0)

0 (p += 0)

Hp(U1 ∩ U2) =









R · 1V1 ⊕ R · 1V2 (p = 0)

0 (p += 0)
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であることが分かる。ここで、1Uv : Uv → Rと 1Vv : U1 ∩ U2 → R（v = 1, 2）は、それぞれ

開集合 Uv, Vvの指示関数である。それで、j∗v (1Uv) = 1U1∩U2 = 1V1 + 1V2なので、

(j∗1 − j∗2)(a · 1U1, b · 1U2) = (a − b) · (1V1 + 1V2)

となることが分かる。よって、マヤー・ビートリス系列から、

Hp(U) =
















R · 1U (p = 0)

R · ∂∗(1V1) (p = 1)

0 (p += 0, 1)

であることが成り立つ。

つづいて、コホモロジー類 ∂∗(1V1)について、次の公式を示す。

∂∗(1V1) = −
1

2π
·
[

−
y

x2 + y2
∧ dx +

x

x2 + y2
∧ dy

]

(9.6)

逆関数の定理より、次の写像は微分同相となることが分かる。

F1 : (0,∞) × (−π, π) → U1, F1(r, θ1) = (r cos θ1, r sin θ1)

F2 : (0,∞) × (0, 2π) → U2, F2(r, θ2) = (r cos θ2, r sin θ2)

実に、Fv（v = 1, 2）は開集合の微分可能全単射で、ヤコビ行列 ∂(x, y)/∂(r, θv)は可逆行列

である。さらに、

∂(r, θv)

∂(x, y)
=

( ∂(x, y)

∂(r, θv)

)−1
=

1

r




r cos θv r sin θv

− sin θv cos θv



 =






x
√

x2 + y2

y
√

x2 + y2

−
y

x2 + y2

x

x2 + y2






であることが分かる。よって、次の公式が成り立つ。さらに、

(d ⊕ d)(θ1, θ2) =
(

−
y

x2 + y2
∧ dx +

x

x2 + y2
∧ dy,−

y

x2 + y2
∧ dx +

x

x2 + y2
∧ dy

)

= (i∗1, i
∗

2)
(

−
y

x2 + y2
∧ dx +

x

x2 + y2
∧ dy

)

一方、関数 θv : Uv → Rの定義より、

(j∗1 − j∗2)(θ1, θ2) = −π · 1V1 + π · 1V2

であることが分かる。よって、境界準同型の定義（定義 7.9）より、

∂∗(−π · 1V1 + π · 1V2) =
[

−
y

x2 + y2
∧ dx +

x

x2 + y2
∧ dy

]
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であることが成り立つ。最後に、

−2π · ∂∗(1V1) = ∂∗(−π · 1V1 + π · 1V2) − ∂∗(π · 1V1 + π · 1V2)

=
[

−
y

x2 + y2
∧ dx +

x

x2 + y2
∧ dy

]

+ 0

なので、(9.6)が成り立つ。

定理 9.7. 有限個の凸開集合 U1, . . . , Ur ⊂ Rnについて、任意の p ! 0に対して、

dimR Hp(U1 ∪ · · · ∪ Ur) < ∞

である。

証明. 帰納法を使う。これに、r = 1のとき、ポアンカレの補題（定理 6.4）より、定理は正

しいので、r − 1のときを正しいと仮定し、rのときを示せばよい。それに、マイヤー・ビー

トリス系列より、次の完全系列が成り立つ。

Hp−1((U1 ∪ · · · ∪ Ur−1) ∩ Ur)
∂∗

!! Hp(U1 ∪ · · · ∪ Ur)
(i∗1,i∗2)

!! Hp(U1 ∪ · · · ∪ Ur−1) ⊕ Hp(Ur)

ここで、交わり (U1 ∪ · · · ∪Ur−1)∩Urは、r− 1個の凸開集合U1 ∩Ur, . . . , Ur−1 ∩Urの和集合

と等しいなので、仮定より、左辺は有限次元のベクトル空間であることが分かる。同様に、

仮定と補題 9.2より、右辺も有限次元のベクトル空間である。これに、次の短完全系列には、

左辺と右辺が有限次元ベクトル空間であることが分かる。

0 !! im(∂∗) !! Hp(U1 ∪ · · · ∪ Ur) !! im((i∗1, i
∗
2)) !! 0

よって、補題 7.1より、Hp(U1 ∪ · · · ∪Ur)は有限次元ベクトル空間であることが分かる。

注 9.8. 一般的に、開集合 U ⊂ Rnとその開被覆 {Ui | i ∈ I}が与えられたとき、次のような

スペクタラル系列が成り立つ。スペクトラル系列とは、長完全系列の一般化である。

Ep,q
1 =

⊕

i1<···<ip

Hq(Ui1 ∩ · · · ∩ Uip) ⇒ Hp+q(U)

ここで、添え字集合 Iの整列が選ばれた。
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