
12 行列式の性質（復習）・クラーメルの公式

行列式とその性質を復習する。n次の正方行列Aの行列式 det(A)は、帰納法を用いて次の
ように定義される。n = 1のとき、det(A) = a11で、n > 1のとき、

det(A) =
n

∑

j=1

(−1)1+ja1j det(A1j) (1)

である。ただし、A1jは、行列Aから第 1行と第 j列を除いたn− 1次の正方行列である。公
式 (1)は、第 1行で展開された行列式と呼ばれる。行列の各性質は、次の定理から成り立つ。

定理 2 (行列式の基本定理). 次の性質 (1)—(4)を満たす写像

det : Mn(R) → R

は、ただ一つが存在する。

(1) 任意の 1 6 j 6 nと列ベクトル a1, . . . , aj−1, aj+1, . . . , an、xと yに対して、

det
(

· · · aj−1 x + y aj+1 · · ·

)

= det
(

· · · aj−1 x aj+1 · · ·

)

+ det
(

· · · aj−1 y aj+1 · · ·

)

である。

(2) 任意の 1 6 j 6 n、列ベクトル a1, . . . , aj−1, aj+1, . . . , an、xとスカラー sに対して、

det
(

a1 · · · aj−1 sx aj+1 · · · an

)

= s det
(

a1 · · · aj−1 x aj+1 · · · an

)

である。

(3) 任意の 1 6 j < k 6 nと列ベクトル a1, . . . , anに対して、

「 aj = ak　ならば　 det
(

a1 · · · aj · · · ak · · · an

)

= 0 」

が成立する。

(4) 単位行列Enに対して、
det(En) = 1

である。
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例 3. 行列 2Aは、行列Aの各列を 2倍とした行列なので、

det(A + A) = det(2A) = 2n det(A)

が得る。

例 3より、一般的に、det(A + B) 6= det(A) + det(B)である。一方、定理 2から、次の結果
が成り立つ。

定理 4. n次の正方行列AとBに対して、次の性質 (1)–(2)が成り立つ。

(i) det(AB) = det(A) det(B)

(ii) det(tA) = det(A)

注 5. 定理 2の性質 (1)–(3)と定理 4の性質 (ii)から、次の性質 (1’)–(3’)が成り立つ。
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である。

(2) 任意の 1 6 i 6 n、行ベクトル a1, . . . , ai−1, ai+1, . . . , an、xとスカラー sに対して、
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である。
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(3) 任意の 1 6 i < j 6 nと行ベクトル a1, . . . , anに対して、

「 ai = aj　 ならば　 det
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
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
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
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= 0 」

が成立する。

行列式の基本定理 2から、次の便利な結果も成り立つ。

定理 6. n次の正方行列Aをおいておく。

(1) （第 i行で展開された行列式）　 det(A) =

n
∑

j=1

(−1)i+jaij det(Aij)

(2) （第 j列で展開された行列式）　 det(A) =

n
∑

i=1

(−1)i+jaij det(Aij)

ここで、Aijは、行列Aから第 i行と第 j列を除いて n − 1正方行列である。

例 7 (三角行列の行列式). 次の性質を満たす正方行列Aは、上三角行列と呼ばれる。

i > j ならば aij = 0

転置行列 tAは上三角行列である行列Aは、下三角行列と呼ばれ、Aまたは tAは上三角行列
である行列Aは、三角行列と呼ばれる。定理 6より、三角行列Aに対して、行列式 det(A)

は、Aの対角の各成分の積と等しい。すなわち、Aは n次の三角行列のとき、

det(A) = a11a22 . . . ann

である。

次の便利な定理も、行列式の基本定理から成り立つ。
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定理 8. 正方行列Aにおいて、次の性質 (1)—(3)が成り立つ。

(1) 行列Bは、行列Aの第 i行を s倍した行列とすると、

det(B) = s det(A)

である。

(2) 行列Bは、行列Aの第 i行と第 j行を入れ替えた行列とすると、

det(B) = − det(A)

である。

(3) 行列Bは、行列Aの第 i行に第 j行（i 6= j）の s倍を加えた行列とすると、

det(B) = det(A)

である。

同様に、次の性質 (1′)—(3′)が成り立つ。

(1’) 行列Cは、行列Aの第 j列を s倍した行列とすると、

det(C) = s det(A)

である。

(2’) 行列Cは、行列Aの第 j列と第 k列を入れ替えた行列とすると、

det(C) = − det(A)

である。

(3’) 行列Cは、行列Aの第 j列に第 k列（j 6= k）の s倍を加えた行列とすると、

det(C) = det(A)

である。
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定理 8と例 7を用いて、行列式を簡単に計算することがよくある。

例 9. 次の行列式を計算してみる。
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∣

∣

0 0 0 0 3

0 2 0 0 5

0 13 −2 0 −4

0 −6 1 2 2

8 1 2 3 4

∣

∣
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∣
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∣
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∣
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第 1行と第 5行を入れ替えた

= +
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∣
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∣
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∣

∣
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∣

∣
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∣
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∣

∣

第 2行と第 4行を入れ替えた

= −
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∣

∣

8 3 2 1 4
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∣
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∣
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∣

∣

∣

∣

∣

第 2列と第 4列を入れ替えた

= −8 · 2 · (−2) · 2 · 3

= 26 · 3 = 192

定理 8を用いて、次の定理を示す。

定理 10. n次の正方行列Aに対して、次の性質 (i)–(ii)は同値である。

(i) rank(A) = n

(ii) det(A) 6= 0

証明. 行列Aの簡約化をBとする。定理 8より、det(A) 6= 0と det(B) 6= 0は同値であるこ
とが分かる。簡約化Bは三角行列なので、det(B) 6= 0とB = Enは同値である。また、階数
の定義より、B = Enと rank(A) = nは同値なので、定理を証明した。
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定理 11 (クラーメルの公式). n次の正則行列

A =
(

a1 a2 · · · an

)

において、連立１次方程式Ax = bの解は、次のように与えられる。

x =











x1

.

.

.

xn











, xi =
det

(

a1 · · · ai−1 b ai+1 · · · an

)

det
(

a1 · · · ai−1 ai ai+1 · · · an

)

証明. 列ベクトル xが連立１次方程式Ax = bの解であることと列ベクトルbが次の１次結
合と表されることは同値である。

b = x1a1 + · · ·+ xnan

従って、定理 2の性質 (1)–(2)より、次の等式が得る。

det
(

a1 · · · ai−1 b ai+1 · · · an

)

=
n

∑

j=1

xj det
(

a1 · · · ai−1 aj ai+1 · · ·an

)

さらに、定理 2の性質 (3)より、j 6= iのとき、右辺の第 j項はゼロなので、

det
(

a1 · · · ai−1 b ai+1 · · · an

)

= xi det
(

a1 · · · ai−1 ai ai+1 · · ·an

)

が成り立つ。

例 12. クレーメルの公式を用いて、次の連立１次方程式を問いでみる。
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まず、定理 8と例 7より、
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= 1 · 3 · 3 = 9
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が得る。同様に、次の行列式を計算する。

det
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よって、クレーメルの公式より、
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が得る。ただし、同じ答えがより簡単に掃き出し法で得る。
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