
3 線形写像

まず、角について復習する。

• 反時計まわりを基本とする。
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• 角をはかるときはラジアンを単位とする。
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問題 1. 例として、次のように定義された写像を考える。
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ここで、R
2 = {


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x

y



 | x, y ∈ R} は平面ベクトルのなす集合であり、Fθはベクトル
−→

OP を、

原点Oを中心として θ回転させたベクトル
−→

OP ′に移すルールである。これに対して、
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とすると、
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はどう表されるか？

//

FF
















 //

OO

O 1cos θ

sin θ

θ ⇒ Fθ





1

0



 =





cos θ

sin θ





OO

ffMMMMMMMMMMMMMMMMM //

OO

O

1

− sin θ

cos θ

θ

⇒ Fθ





0

1



 =





− sin θ

cos θ





写像 Fθ : R
2 → R

2が次の性質 (1)–(2)をもつことが分かると問題が解ける。

(1) スカラー倍がスカラー倍になっている。

Fθ(sx) = sFθ(x)

(2) ベクトル和がベクトル和になっている。

Fθ(x + y) = Fθ(x) + Fθ(y)
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性質 (1)–(2)を満たす写像は、線形写像と呼ばれる。この性質により、
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が成り立つ。すなわち、回転 Fθ : R
2 → R

2は、
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と表される。性質 (1)–(2)は、次の図式から成り立つことが分かる。
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命題 2. 線形写像 F : R
2 → R

2は、次のように表される。
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証明線形写像の定義より、
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である。よって、命題は示された。

問題 3. ベクトル
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を角 β回転させて角 α回転させるとどうなるか？まず、問題 1より、
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である。同様に、そのベクトルの角 α回転させたベクトルは、
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である。一方、
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であることが分かる。
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命題 4. 線形写像 F : R
2 → R

2とG : R
2 → R

2を次のように表す。
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このとき、合成写像 F ◦ G : R
2 → R

2は次のように表される。
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証明合成写像の定義より、
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なので、命題 2によって、
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であることが分かる。

注 5. 一般的に、
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は異なる。
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