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1 写像

定義 1.1. 写像 f : A → Bとは、集合AとBと任意の a ∈ Aを f(a) ∈ Bに対応させるルー
ル f を合わせたものである。集合 Aは写像 f : A → B の定義域と呼ばれ、集合 B は写像
f : A → Bの値域と呼ばれる。

写像 f : A → BもA
f−→ Bと書く。

例 1.2. 次の三つの写像は互いに違う写像である。

f : R → R, f(x) = x2

g : R → [0,∞), g(x) = x2

h : [0,∞) → [0,∞), h(x) = x2

例 1.3. 微分法も次のような写像である。

{F : R → R | F は微分可能である } {f : R → R}//

F F ′
� //

定義 1.4. 写像 f : A → Bをおいておく。

(1) 任意の b ∈ Bについて、ある a ∈ Aに対して、b = f(a)であるとき、写像 f : A → Bは
全射と呼ばれる。

(2) 任意の a1, a2 ∈ Aに対して、「f(a1) = f(a2)ならば a1 = a2」のとき、写像 f : A → Bは
単射と呼ばれる。

(3) 写像 f : A → Bは全射で単射でもあるとき、全単射と呼ばれる。

注 1.5. 「f(a1) = f(a2)ならば a1 = a2」と「a1 6= a2ならば f(a1) 6= f(a2)」は同値である。

例 1.6. 例 1.2では、f : R → Rは全射でも単射でもない、g : R → [0,∞)は全射であり単射
でない、h : [0,∞) → [0,∞)は全単射である。

定義 1.7. 写像 f : A → Bについて、部分集合

f(A) = {f(a) | a ∈ A} ⊂ B

は写像 f : A → Bの像と呼ばれる。
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注 1.8. 写像 f : A → Bは全射であることとその像 f(A)が集合Bの全体であることは同値
である。

例 1.9. 例 1.2では、f : R → R, g : R → [0,∞)、h : [0,∞) → [0,∞)は、全て同じ像 [0,∞)

を持つ。例 1.3で定義された写像の像は次の部分集合と等しい。

{f : R → R | f は原始関数を持つ } ⊂ {f : R → R}

定義 1.10. 写像 f : A → Bをおいておく。部分集合 V ⊂ Bの f による逆像は、

f−1(V ) = {a ∈ A | f(a) ∈ V } ⊂ A

で定義されたAの部分集合である。部分集合 V ⊂ Bはただ一つの元 b ∈ Bからなるとき、
逆像 f−1(V ) = f−1({b}) ⊂ Aも f−1(b)表す。

注 1.11. 唯一つの元からなる部分集合 {b} ⊂ Bの場合には、逆像 f−1({b})も f−1(b)と表し、
次のように与えられている。

f−1(b) = {a ∈ A | f(a) = b} ⊂ A

ただし、逆像 f−1(b)は集合Aの部分集合であり、集合Aの元ではない。

例 1.12. 例 1.2で定義された写像のとき、唯一つの元からなる部分集合の逆像は次のように
与えられている。

f−1(y) =



























{√y,−√
y} (y > 0)

{0} (y = 0)

∅ (y < 0)

g−1(y) =











{√y,−√
y} (y > 0)

{0} (y = 0)

h−1(y) = {√y}

補題 1.13. 写像 f : A → Bをおいておく。

(1) 任意の部分集合 V ⊂ Bに対して、f(f−1(V )) ⊂ V

(2) 任意の部分集合U ⊂ Aに対して、f−1(f(U)) ⊃ U
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証明(1) f(f−1(V )) = {f(a) | a ∈ f−1(V )} = {f(a) | f(a) ∈ V } ⊂ V

(2) f−1(f(U)) = {a ∈ A | f(a) ∈ f(U)} ⊃ U

定義 1.14. 写像 f : A → Bと g : B → Cにおいて、次のように定義された写像g ◦ f : A → C

は写像 f : A → Bと g : B → Cの合成写像と呼ばれる。

(g ◦ f)(a) = g(f(a))

次の図式を見ると以上の定義がすぐ分かる。

A
f

//

g◦f

99B
g

// C

補題 1.15. (1) f : A → Bと g : B → Cは全射のとき、g ◦ f : A → Cも全射である。

(2) f : A → Bと g : B → Cは単射のとき、g ◦ f : A → Cも単射である。

(3) f : A → Bと g : B → Cは全単射のとき、g ◦ f : A → Cも全単射である。

証明 (1) 合成写像 g ◦ f : A → Cの像はCであることを示せばよい。

(g ◦ f)(A) = g(f(A)) = g(B) = C

(2) 「(g ◦ f)(a1) = (g ◦ f)(a2)」を満たす元 a1, a2 ∈ Aをおいおく。a1 = a2であることを
示せばよい。まず、合成写像の定義より g(f(a1)) = g(f(a2))であることが分かる。それに、
g : B → C は単射なので、f(a1) = f(a2)であることが分かる。最後に、f : A → Bも単射
なので、a1 = a2であることが分かる。よって、g ◦ f : A → Cは単射であることを示した。
(3) は (1) と (2) から分かる。

3



2 平面、空間のベクトルと簡単な図式

直交座標系とは、互いに直交している座標軸を指定することによって定まる座標系のことで
ある。平面上の直交座標系ではそれぞれの点に対して一意に定まる2つの実数の組によって
点の位置が指定される。

//

OO

|

− •

• x

y

;;wwwwwwwwwwwwwwwwwwwwwwwwwwwww

P

O a

b

これは、次のように表される。

−→

OP =





a

b



 または
−→

OP =





a

b





座標 aと bはそれぞれ x軸成分と y軸成分と呼ばれる。点Oは、原点と呼ばれる。

注：空間上の直交座標系では 3つの実数の組によって座標が与えられる。

((RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

OO

22ddddddddddddddddddddddddddddddddddddddddd

•

•

;;wwwwwwwwwwwwwwwwwwwwwwwwwwwww

x

y

z

P

O

a

b

c
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これは、次のように表される。

−→

OP =











a

b

c











または
−→

OP =











a

b

c











座標 a、b、cはそれぞれ x軸成分、y軸成分、z軸成分と呼ばれる。点Oは、原点と呼ばれる。

問題 2.1. 原点を通る直線 ℓの表示を考えましょう。ℓ上に原点Oと異なる点Aをとる。
ooooooooooooooooooooooooooooooooooooooooooooooooooo

•

•

•

ℓ

O

A

P

//

OO

|

−

|

−

a

b

x

y

このとき、他の点 P は、次のように表される。




x

y



 =





sa

sb





ここで、sは点 P と一対一対応する実数（スカラー）である。この方程式は、直線 ℓのパラ
メーター表示と呼ばれ、平面ベクトルを用いて次のように表される。

−→

OP = s
−→

OA

ここで、右辺は、スカラー sとベクトル
−→

OAのスカラー積と呼ばれる。

例 2.2. 原点Oと
−→

OA =





2

3



を満たす点Aを通る直線のパラメーター表示は、





x

y



 =





2s

3s



 または





x

y



 = s





2

3





と表される。つまり、x/2 = y/3となっている。

注 2.3. スカラー積 (−1)
−→

OAは単に−
−→

OAと略記される。

•

•

44jjjjjjjjjjjjjjjjjj

•
ttjjjjjjjjjjjjjjjjjj //

OO

O

A

A′

|

−

|

−

a

b

−a

−b

−→

OA′ = −
−→

OA
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問題 2.4. 必ずしも原点を通らない直線 ℓをどう書くか？

ooooooooooooooooooooooooooooooooooooooooooooooooooo
•

•

•

ℓ

B

A

P

•

O

//

OO

直線 ℓ上に２点A,Bをとる。問題 2.1より、直線 ℓ上の点 P は、次の方程式を満たす。

−→

BP = s
−→

BA

よって、ℓ上の点 P は、次のように表される。

−→

OP =
−→

OB +
−→

BP =
−→

OB + s
−→

BA (2.5)

ここで、「+」はベクトルの足し算を表す。ベクトルの足し算は、成分ごとに足すことであ
る。次に、方程式 (2.5)の座標を考える。まず、

−→

OA =





a1

a2



 かつ
−→

OB =





b1

b2





と表す。それに、
−→

OA =
−→

OB +
−→

BA

なので、ベクトル
−→

BAは次のように表されることがわかる。

−→

BA =
−→

OA −
−→

OB =





a1

a2



−





b1

b2



 =





a1 − b1

a2 − b2





よって、
−→

OP =





x

y




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とすると、方程式 (2.5)は次のように表される。




x

y



 =





b1

b2



+ s





a1 − b1

a2 − b2



 =





b1 + s(a1 − b1)

b2 + s(a2 − b2)



 (2.6)

方程式 (2.5)と (2.6)は直線 ℓのパラメーター表示と呼ばれる。

例 2.7.
−→

OA =





9

7



、
−→

OB =





3

4



で定まる点を通る直線のパラメータ表示を求める。





x

y



 =





3

4



 + s











9

7



−





3

4











=





3 + 6s

4 + 3s





この方程式は、次の方程式と同じである。
x − 3

6
=

y − 4

3

例 2.8. 空間内の直線も全く同じようにできる。例として、
−→

OA =











5

1

−1











、
−→

OB =











1

−2

−3











で

定まる点を通る直線のパラメーター表示は次のように表される。










x

y

z











=











1

−2

−3











+ s





























5

1

−1











−











1

−2

−3





























=











1 + 4s

−2 + 3s

−3 + 2s











この方程式は、次の方程式と同じである。
x − 1

4
=

y + 2

3
=

z + 3

2

注 2.9. パラメーター表示は、物理的な直観に合っている。パラメーター sを時間とみなす。

s = 0 · · ·
−→

OB

s = 1 · · ·
−→

OA =
−→

OB +
−→

BA

s = 2 · · ·
−→

OB + 2
−→

BA

この捕らえ方で、直線は一定の速度で運動している物体の軌跡である。

s · · · 時間
−→

OB · · · 時刻 0での位置
−→

BA · · · 速度
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注 2.10. 点A、Bを通る直線のパラメーター表示
−→

OP =
−→

OB + s
−→

BA

において、「0 6 s 6 1」という条件と「P が線分 BAにのっている」という条件は同値で
ある。

問題 2.11. 平行四辺形を考えましょう。

•

•

KK�����������

•44jjjjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjjjjj

��
��
��
��
��
��

//

OO

O

A

B

注 2.10より、線分OA、OB上にのっている点 P は、それぞれ
−→

OP = s
−→

OA (0 6 s 6 1)
−→

OP = t
−→

OB (0 6 t 6 1)

と表される。同様に、平行四辺形内の点P は、以下のように表示される。
−→

OP = s
−→

OA + t
−→

OB (0 6 s 6 1, 0 6 t 6 1)

•

•

KK�����������

•44jjjjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjjjjj

��
��
��
��
��
��

//

OO

O

A

B

x

y

//

OO

s

t

|

−

1

1

0

$$

ゆがんで移る

問題 2.12. 点 P を原点中心に角度 αだけ回転させた点を P ′とする。このとき、

−→

OP =





x

y



 かつ
−→

OP ′ =





x′

y′





とすると、次の関係が成り立つ。




x′

y′



 =





cos α − sin α

sin α cos α









x

y



 =





x cos α − y sin α

x sin α + y cos α




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3 線形写像

まず、角について復習する。

• 反時計まわりを基本とする。

EE

��

反時計まわり＝基本
counter-clockwise

時計まわり
clockwise

• 角をはかるときはラジアンを単位とする。

//

OO

||

−

−

1−1

1

−1





θYY

|

−

cos θ

sin θ
2π rad = 360◦

cos
π

2
= 0 cos π = −1 cos

π

3
=

1

2
cos

π

6
=

√
3

2
cos

π

4
=

√
2

2

sin
π

2
= 1 sin π = 0 sin

π

3
=

√
3

2
sin

π

6
=

1

2
sin

π

4
=

√
2

2

問題 3.1. 例として、次のように定義された写像を考える。

•

•

33ggggggggggggggggggggggg

•JJ������������������������
O

P

P ′

θ

//

OO

|

−

1

1

R
2

R
2//

Fθ

−→

OP
−→

OP ′
� //
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ここで、R
2 = {





x

y



 | x, y ∈ R} は平面ベクトルのなす集合であり、Fθはベクトル
−→

OP を、

原点Oを中心として θ回転させたベクトル
−→

OP ′に移すルールである。これに対して、

−→

OP =





x

y





とすると、

Fθ(
−→

OP ) =
−→

OP ′ =





x′

y′





はどう表されるか？

//

FF
















 //

OO

O 1cos θ

sin θ

θ ⇒ Fθ





1

0



 =





cos θ

sin θ





OO

ffMMMMMMMMMMMMMMMMM //

OO

O

1

− sin θ

cos θ

θ

⇒ Fθ





0

1



 =





− sin θ

cos θ





写像 Fθ : R
2 → R

2が次の性質 (1)–(2)をもつことが分かると問題が解ける。

(1) スカラー倍がスカラー倍になっている。

Fθ(sx) = sFθ(x)

(2) ベクトル和がベクトル和になっている。

Fθ(x + y) = Fθ(x) + Fθ(y)
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性質 (1)–(2)を満たす写像は、線形写像と呼ばれる。この性質により、

Fθ





x

y



 = Fθ



x





1

0



+ y





0

1









(2)
= Fθ



x





1

0







+ Fθ



y





0

1









(1)
= xFθ





1

0



+ yFθ





0

1



 = x





cos θ

sin θ



 + y





− sin θ

cos θ





=





x cos θ − y sin θ

x sin θ + y cos θ



 =





cos θ − sin θ

sin θ cos θ









x

y





が成り立つ。すなわち、回転 Fθ : R
2 → R

2は、

Fθ





x

y



 =





cos θ − sin θ

sin θ cos θ









x

y





と表される。性質 (1)–(2)は、次の図式から成り立つことが分かる。

//

OO

22dddddddddddddddddd

KK������������

::vvvvvvvvvvvvvvvvvvvvvvvvv x

y x+y

RR$$$$$$$$$$$$$$$$$$
kkWWWWWWWWWWWW

ZZ6666666666666666666666666

Fθ(x)

Fθ(y)

Fθ(x+y)

//

OO

33gggggggggggg

SS''''''''''''

33gggggggggggg

SS''''''''''''

x sx

Fθ(x)

Fθ(sx)

⇒ Fθ(sx) = sFθ(x) ⇒ Fθ(x + y) = Fθ(x) + Fθ(y)

命題 3.2. 線形写像 F : R
2 → R

2は、次のように表される。

F





x

y



 =





a b

c d









x

y





ただし、




a

c



 = F





1

0



 かつ





b

d



 = F





0

1





である。
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証明線形写像の定義より、

F





x

y



 = F



x





1

0



+ y





0

1









(2)
= F



x





1

0







 + F



y





0

1









(1)
= xF





1

0



 + yF





0

1



 = x





a

c



 + y





b

d



 =





ax + by

cx + dy





=





a b

c d









x

y





である。よって、命題は示された。

問題 3.3. ベクトル





x

y



を角 β回転させて角 α回転させるとどうなるか？まず、問題 3.1よ

り、角 β回転させたベクトルは、

Fβ





x

y



 =





cos β − sin β

sin β cos β









x

y





である。同様に、そのベクトルの角 α回転させたベクトルは、

Fα(Fβ





x

y



) =





cos α − sin α

sin α cos α









cos β − sin β

sin β cos β









x

y





である。一方、

Fα(Fβ





x

y



) = Fα+β





x

y



 =





cos(α + β) − sin(α + β)

sin(α + β) cos(α + β)









x

y





なので、




cos α − sin α

sin α cos α









cos β − sin β

sin β cos β



 =





cos(α + β) − sin(α + β)

sin(α + β) cos(α + β)





であることが成り立つ。すなわち、

cos(α + β) = cos α cos β − sin α sin β

sin(α + β) = sin α cos β + cos α sin β

であることが分かる。
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命題 3.4. 線形写像 F : R
2 → R

2とG : R
2 → R

2を次のように表す。

F





x

y



 =





a11 a12

a21 a22









x

y



 かつ G





x

y



 =





b11 b12

b21 b22









x

y





このとき、合成写像 F ◦ G : R
2 → R

2は次のように表される。

(F ◦ G)





x

y



 =





a11 a12

a21 a22









b11 b12

b21 b22









x

y





証明合成写像の定義より、

(F ◦ G)





x

y



 = F (G





x

y



)

なので、命題 3.2によって、

(F ◦ G)





x

y



 = F (





b11 b12

b21 b22









x

y



) =





a11 a12

a21 a22









b11 b12

b21 b22









x

y





であることが分かる。

注 3.5. 一般的に、




a11 a12

a21 a22









b11 b12

b21 b22



 と





b11 b12

b21 b22









a11 a12

a21 a22





は異なる。
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4 行列とその演算

定義 4.1. 自然数mと nにおいて、m × n個の実数 aij（i = 1, 2, . . . , m; j = 1, 2, . . . , n）を
次のように長方形に並べて ( )または [ ]でくくったものはm × n行列またはm × n型の行
列（m-by-n real matrix or matrix of dimension m-by-n）と呼ばれる。

A =

















a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

















または A =

















a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

















この aijは行列の (i, j)成分（(i, j)th entry）と呼ばる。行列Aの成分の横のならび
(

ai1 ai2 · · · ain

)

は、Aの第 i行（ith row）と呼ばれ、Aの成分の縦のならび
















a1j

a2j

...

amj

















は、Aの第 j列（jth column）と呼ばれる。

注 4.2. 1 × n行列は、n次の行ベクトル（row vector）とも呼ばれ、m × 1行列はm次の列
ベクトル（column vector）とも呼ばれる。

例 4.3.





2 1
√

3

0 −
√

3 1



は 2 × 3行列、
(

1 0 3 2
)

は 4次の行ベクトル、











2

4

8











は 3次の

列ベクトルである。

定義 4.4. (i) 全ての成分が0であるようなm×n行列は、m×n零行列（m×n zero matrix）
と呼ばれ、Om,nまたは単にOと書かれる。

(ii) n × n行列は n次の正方行列（square matrix of order n）とも呼ばれる。

(iii) n次の正方行列Aにおいて、成分 a11, a22, . . . , annは、Aの対角成分（diagonal entries）
と呼ばれる。
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(iv) 対角成分以外の成分が全て0であるn次の正方行列は、n次の対角行列（diagonal matrix

of order n）と呼ばれる。

(v) 対角成分が全て 1である n次の対角行列は、n次の単位行列（identity matrix）と呼ば
れ、Enまたは単にEと書かれる。

(vi) 行列Aの行と列を入れ替えた行列は、行列Aの転置行列（transpose)と呼ばれ、tAと
書かれる。成分で書くと

A =

















a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

















ならば tA =

















a11 a21 · · · an1

a12 a22 · · · an2

...
...

. . .
...

a1m a2m · · · amn

















である。

注 4.5. (i) 行列Aはm × n型の行列のとき、転置行列 tAは n × m型の行列である。

(ii) 行列Aの転置行列 tAの転置行列 t(tA)は、元の行列Aに戻る。すなわち、t(tA) = A

である。

例 4.6. (i) O2,3 =





0 0 0

0 0 0





(ii) A =











2 −1 0

1 −2 3

0 1 1











は 3次の正方行列である。

(iii) 上の正方行列Aの対角成分は 2,−2, 1である。

(iv) B =











1 0 0

0 −1 0

0 0 2











は 3次の対角行列であり、その対角成分は 1,−1, 2である。

(v) E1 =
(

1
)

、E2 =





1 0

0 1



、E3 =











1 0 0

0 1 0

0 0 1











、．．．
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(vi) tO2,3 = O3,2、tEn = En

(vii) 上の行列AとBに対して、tA =











2 1 0

−1 −2 1

0 3 1











、tB = Bである。

定義 4.7. (i) 同じm × n型の行列

A =

















a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

















と B =

















b11 b12 · · · b1n

b21 b22 · · · b2n

...
...

. . .
...

bm1 bm2 · · · bmn

















の和（sum）は、次のように定義されるm × n行列である。

A + B =

















a11 + b11 a12 + b12 · · · a1n + b1n

a21 + b21 a22 + b22 · · · a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 · · · amn + bmn

















(ii) スカラー s ∈ Rとm × n行列

A =

















a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

















のスカラー積（scalar product）は、次のように定義されるm × n行列である。

sA =

















sa11 sa12 · · · sa1n

sa21 sa22 · · · sa2n

...
...

. . .
...

sam1 sam2 · · · samn

















注 4.8. (i) 型は異なる行列の和は定義されていない。

(ii) スカラー積 (−1)Aは単に−Aと書かれる。
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(iii) m × n行列Aと−Bの和は単にA − Bと書かれ、行列AとBの差（difference）と呼
ばれる。

命題 4.9. m × n行列A、B、Cにおいて、次の性質が成立する。

(i) （和の結合律）A + (B + C) = (A + B) + C

(ii) （和の交換法則）A + B = B + A

(iii) A + O = A = O + A

スカラー s, t ∈ Rとm × n行列Aにおいて、次の性質が成立する。

(iv) (st)A = s(tA)

(v) 0A = O、1A = A

スカラー s, t ∈ Rとm × n行列A、Bにおいて、次の性質が成立する。

(vi) （分配法則）s(A + B) = sA + sB

(vii) （分配法則）(s + t)A = sA + tA

証明定義からすぐ成り立つ。

例 4.10. A =





1 0 2

−1 3 0



 とB =





1 −1 0

−2 1 2



とすると、

A − 2B =





1 0 2

−1 3 0



− 2





1 −1 0

−2 1 2





=





1 0 2

−1 3 0



−





2 −2 0

−4 2 4



 =





−1 2 2

3 1 −4





である。
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定義 4.11. m× n行列Aと n× p行列Bの積（matrix product）は、次のように定義される
m × p行列ABである。行列AとBを

A =

















a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

















と B =

















b11 b12 · · · b1p

b21 b22 · · · b2p

...
...

. . .
...

bn1 bn2 · · · bnp

















とし、i = 1, 2, . . . , mと j = 1, 2, . . . , pに対して、

cij = ai1b1j + ai2b2j + ai3b3j + · · · + ainbnj

とすると、

AB =

















c11 c12 · · · c1p

c21 c22 · · · c2p

...
...

. . .
...

cm1 cm2 · · · cmp

















である。

注 4.12. 定義 4.11における cijは“行列Aの第 i行掛ける行列Bの第 j列”であることを考
えればよい。

例 4.13. 2 × 3行列Aと 3 × 4行列Bをそれぞれ

A =





2 −1 0

3 0 −2



 と B =











−1 0 2 1

3 1 0 −1

0 0 1 2











とすると、積ABは次の 2 × 4行列となる。

AB =





2 −1 0

3 0 −2















−1 0 2 1

3 1 0 −1

0 0 1 2











=





−5 −1 4 3

−3 0 4 −1





以上の行列AとBに対して、積BAは定義されていない。

注 4.14. n次の正方行列 AとBに対して、行列 ABとBAは、両方定義されている。しか
し、一般的にABとBAは異なる。例として、

A =





1 0

0 −1



 と B =





0 −1

1 0




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とすると、

AB =





1 0

0 −1









0 −1

1 0



 =





0 −1

−1 0





BA =





0 −1

1 0









1 0

0 −1



 =





0 1

1 0





である。

命題 4.15. m × n行列A、n × p行列B、p × q行列Cにおいて、次の性質が成り立つ。

(i) （積の結合律）A(BC) = (AB)C

(ii) AEn = A、EmA = A

スカラー s ∈ R、m × n行列A、n × p行列Bにおいて、次の性質が成り立つ。

(iii) (sA)B = s(AB) = A(sB)

m × n行列A、n × p行列BとB′、p × q行列Cにおいて、次の性質が成り立つ。

(iv) （分配法則）A(B + B′) = AB + AB′

(v) （分配法則）(B + B′)C = BC + B′C

証明積の結合律 (i)を示すために、定義 4.11を思い出す。行列BCの (u, k)成分は
p
∑

v=1

buvcvk

なので、行列A(BC)の (i, k)成分は、次のように表される。
n
∑

u=1

aiu(

p
∑

v=1

buvcvk) =

n
∑

u=1

p
∑

v=1

aiubuvcvk

同様に、行列ABの (i, v)成分は
n
∑

u=1

aiubuv

なので、行列 (AB)Cの (i, k)成分は、次のように表される。
p
∑

v=1

(
n
∑

u=1

aiubuv)cvk =

p
∑

v=1

n
∑

u=1

aiubuvcvk
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行列A(BC)と (AB)Cの (i, k)成分（i = 1, 2, . . . , m; k = 1, 2, . . . , q）は等しいので、

A(BC) = (AB)C

を示した。他の性質 (ii)–(v)は簡単に証明される。

注 4.16. 行列Aは正方行列なら、Aを n回掛けた行列Anが定義された。

例 4.17. 2次の正方行列A =





1 1

0 1



に対して、An =





1 n

0 1



である。

例 4.18. n次の正方行列AとBに対して、

(A + B)2 = (A + B)(A + B)

(iv)
= (A + B)A + (A + B)B

(v)
= A2 + BA + AB + B2

である。

定義 4.19. m × n行列のなす集合は、Mm,n(R)と書かれる。

注 4.20. (i) n次の正方行列のなす集合Mn,n(R)は、単にMn(R)と書かれる。

(ii) n次の列ベクトルのなす集合Mn,1(R)は、単にR
nと書かれる。
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5 行列と線形写像

前回、R
nを n次の列ベクトルのなす集合と定義した。

R
n =

{

















x1

x2

...

xn

















| x1, x2, . . . , xn ∈ R

}

定義 5.1. 次の性質 (1)–(2)を満たす写像 F : R
n → R

mは、線形写像と呼ばれる。

(1) F はスカラー積を保つ。すなわち、

F (sx) = sF (x)

(2) F はベクトル和を保つ。すなわち、

F (x + y) = F (x) + F (y)

命題 5.2. 線形写像 F : R
n → R

mは、次のように表される。

F

















x1

x2

.

.

.

xn

















=

















a11 a12 · · · a1n

a21 a22 · · · a2n

.

.

.

.

.

.

.
.
.

.

.

.

am1 am2 · · · amn

































x1

x2

.

.

.

xn

















ただし、
















a11

a21

.

.

.

am1

















= F

















1

0
.
.
.

0

















、

















a12

a22

.

.

.

am2

















= F

















0

1
.
.
.

0

















、 · · · 、

















a1n

a2n

.

.

.

amn

















= F

















0

0
.
.
.

1

















である。

証明任意の n次の列ベクトルは、一意に次のように表される。
















x1

x2

...

xn

















= x1

















1

0
...

0

















+ x2

















0

1
...

0

















+ · · · + xn

















0

0
...

1
















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したがって、定義 5.1より、

F

















x1

x2

...

xn

















= F
(

x1

















1

0
...

0

















+ x2

















0

1
...

0

















+ · · ·+ xn

















0

0
...

1

















)

(2)
= F

(

x1

















1

0
...

0

















)

+ F
(

x2

















0

1
...

0

















)

+ · · ·+ F
(

xn

















0

0
...

1

















)

(1)
= x1F

















1

0
...

0

















+ x2F

















0

1
...

0

















+ · · · + xnF

















0

0
...

1

















= x1

















a11

a21

...

am1

















+ x2

















a12

a22

...

am2

















+ · · · + xn

















a1n

a2n

...

amn

















=

















a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn

...

am1x1 + am2x2 + · · · + amnxn

















=

















a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

































x1

x2

...

xn

















である。よって、命題を示した。
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定義 5.3. 命題 5.2におけるm × n行列

A =

















a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

















は、線形写像 F : R
n → R

mの表現行列と呼ばれる。

例 5.4. A社は、以下の原材料からスポーツドリンクを生産している：x1gの水、x2gの砂糖、
x3gのぶどう糖果糖液糖、x4gの果汁、x5gのぶどう糖、x6gの食塩、x7gの酸味料、x8gの塩
化K、x9gの乳酸Ca、x10gの調味料、x11gの塩化Mg、x12gの香料、x13gの酸化防止剤

すなわち、ドリンクの組成は次のベクトルで表される。

x =

















x1

x2

...

x13

















∈ R
13

それに対して、ドリンクの製品の価格は次の線形写像で表される。

F : R
13 → R, F (x) = a1x1 + a2x2 + · · ·+ a13x13 = Ax

ここで、原料の価格は、行列 A = (a1 a2 . . . a13) で表される。現実の世界では、変数
xiの数は、通常、１万程度である。よって、高次元のベクトル空間が多い。

例 5.5. (1) 命題 5.2より、空間内の「x = z」で定義された平面に関して対称な点を対応させ
る線形写像 F : R

3 → R
3は、次のように表される。

F











x

y

z











=











0 0 1

0 1 0

1 0 0





















x

y

z











(2) 空間内に点を y軸に関して反時計まわりに π/2回転させる線形写像G : R
3 → R

3は、

G











x

y

z











=











0 0 1

0 1 0

−1 0 0





















x

y

z











と表される。
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命題 5.6. 線形写像 F : R
n → R

mとG : R
p → R

nを、次のようにそれぞれのm × n行列A

と n × p行列Bで表す。
F (y) = Ay, G(x) = Bx

このとき、合成写像 F ◦ G : R
p → R

mは、次のようにm × p行列ABで表される。

(F ◦ G)(x) = ABx

証明合成写像の定義より、(F ◦ G)(x) = F (G(x)) なので、命題 5.2より、

(F ◦ G)(x) = F (Bx) = A(Bx) = (AB)x

であることが分かる。

例 5.7. 以上の例 5.5における線形写像 F : R
3 → R

3とG : R
3 → R

3について、










0 0 1

0 1 0

1 0 0





















0 0 1

0 1 0

−1 0 0











=











−1 0 0

0 1 0

0 0 1











なので、命題 5.6より、合成写像 F ◦ G : R
3 → R

3は次のように表される。

(F ◦ G)











x

y

z











=











−1 0 0

0 1 0

0 0 1





















x

y

z











よって、F ◦G : R
3 → R

3は、平面「x = 0」に関して対称な点を対応させる線形写像である
ことが分かる。

次に、行列の分割（partition）を考える。行列をいくつかの小さな行列に分割すると、計算
が容易になることが多い。m× n行列Aを、以下のようにmi × nj行列Aij（i = 1, 2, . . . , r、
j = 1, 2, . . . , s）に分割するとき、

m = m1 + m2 + · · · + mr

n = n1 + n2 + · · ·+ ns
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が必要である。ここで、行列Aijは、分割された行列Aのブロック（block）と呼ばれる。

A =



















A11 A12 · · · A1s

A21 A22 · · · A2s

...
...

. . .
...

Ar1 Ar2 · · · Ars



















例 5.8.











1 −2 0

−1 −3 2

5 4 3











=





A11 A12

A21 A22



 ,

A11 =
(

1 −2
)

A12 =
(

0
)

A21 =





−1 −3

5 4



 A22 =





2

3





命題 5.9. 次のように分割されたm× n行列Aと n× p行列Bをおいておく。行列Aの n個
の列の分割と行列Bの n個の行の分割が同じであることを仮定する。

A =



















A11 A12 · · · A1s

A21 A22 · · · A2s

.

.

.

.

.

.

.
.
.

.

.

.

Ar1 Ar2 · · · Ars



















, B =



















B11 B12 · · · B1t

B21 B22 · · · B2t

.

.

.

.

.

.

.
.
.

.

.

.

Bs1 Bs2 · · · Bst



















.

このとき、m × p行列C = ABは、次のように分割される。

C = AB =



















C11 C12 · · · C1t

C21 C22 · · · C2t

.

.

.

.

.

.

.
.
.

.

.

.

Cr1 Cr2 · · · Art



















, Cij = Ai1B1j + Ai2B2j + · · · + AisBsj

注 5.10. 命題 5.9より、分割された行列AとBの積を計算するとき、AとBの各ブロック
の行列を一般の“数”であるように考えればよい。しかし、その“数”の順序を変更しない
ようにする必要がある。
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例 5.11. 次の 4次の正方行列の n乗を計算するために、示したように分割する。

A =



















1 0 −2 1

0 1 3 −1

0 0 1 0

0 0 0 1



















=





E B

O E





命題 5.9より、

An =





E B

O E





n

=





E nB

O E



 =



















1 0 −2n n

0 1 3n −n

0 0 1 0

0 0 0 1



















であることが分かる。

定義 5.12. 次の分割されたm × n行列Aをおいておく。

A =



















A11 A12 · · · A1s

A21 A22 · · · A2s

...
...

. . .
...

Ar1 Ar2 · · · Ars



















これについて、r = mと s = 1の場合には、行ベクトルへの分割と呼ばれ、r = 1と s = nの
場合には、列ベクトルへの分割と呼ばれる。

列ベクトルは、a,b, . . . ,x,y, zなどのアルファベットの小文字の太字で書かれる。aは列ベ
クトルのとき、転置行列 taは行ベクトルなので、行ベクトルは、ta, tb, . . . , tx, ty, tzなどと
書かれる。よって、それぞれの行ベクトルに分割された行列と列ベクトルに分割された行列
は、次のようにも表される。

A =

















ta1

ta2

...

tam

















B =
(

b1 b2 · · · bn

)

行ベクトルへの分割 列ベクトルへの分割
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6 連立１次方程式

次の連立１次方程式を考える。






























a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...
...

. . .
...

...

am1x1 + am2x2 + · · · + amnxn = bm

(6.1)

行列を用いて、この連立１次方程式は、次の行列の方程式で表される。
















a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

































x1

x2

...

xn

















=

















b1

b2

...

bm

















(6.2)

すなわち、

A =

















a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

















, x =

















x1

x2

...

xn

















, b =

















b1

b2

...

bm

















とすると、方程式 (6.2)は、次のようにも表される。

Ax = b (6.2)

ここで、行列Aは、連立１次方程式 (6.1)の係数行列（coefficient matrix）と呼ばれる。係
数行列Aはm × n型の行列であることと、元の方程式 (6.1)はm個の方程式からなるn変
数の連立１次方程式であることは、同値である。次のm× (n + 1)型の行列は、方程式 (6.1)

と (6.2)の拡大係数行列（augmented coefficient matrix）と呼ばれる。














a11 a12 · · · a1n b1

a21 a22 · · · a2n b2

...
...

. . .
...

...

am1 am2 · · · amn bm














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例 6.3. 次の連立１次方程式を考える。


















3x1 − 2x2 + x3 + 4x4 = 7

x1 − 3x3 + x4 = 5

2x1 − x2 + 9x3 = 0

この連立１次方程式は、次の行列の方程式とも表される。











3 −2 1 4

1 0 −3 1

2 −1 9 0



























x1

x2

x3

x4

















=











7

5

0











以上の方程式の拡大係数行列は、次の 3 × 5型の行列となる。








3 −2 1 4 7

1 0 −3 1 5

2 −1 9 0 0









係数行列Aを、A =
(

a1 a2 · · · an

)

と列ベクトルに分割すると

Ax =
(

a1 a2 · · · an

)

















x1

x2

...

xn

















= x1a1 + x2a2 + · · ·xnan

となる。よって、連立１次方程式 (6.1)は

x1a1 + x2a2 + · · ·xnan = b (6.4)

となる x1, x2, . . . , xnを求めることと同等である。

定義 6.5. m次の列ベクトル a1, a2, . . . , anが与えられたとき、m次の 列ベクトル

c1a1 + c2a2 + · · ·+ cnan

は a1, a2, . . . , anの１次結合（linear combination）と呼ばれる。
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例 6.6. 任意の 2次の列ベクトル





x1

x2



は、次のように列ベクトル





1

0



と





0

1



の１次結合

と表すことができる。




x1

x2



 = x1





1

0



+ x2





0

1





例 6.7. 例 6.3における連立１次方程式は、次のよにも表される。

x1











3

1

2











+ x2











−2

0

−1











+ x3











1

−3

9











+ x4











4

1

0











=











7

5

0











問題 6.8. 式の加減、入れ替え等を行うことによって、次の連立１次方程式を解いてみる。

(I)







2x + 3y = 8

x + 2y = 5

(II)







−y = −2 1 + 2 × (−2)

x + 2y = 5

(III)







−y = −2

x = 1 2 + 1 × 2

(IV)







x = 1

−y = −2
1 と 2 を入れ替えた

(V)







x = 1

y = 2 2 × (−1)

ここで 1 と 2 その１つ前の連立方程式の第１式と第２式を意味する。

問題 6.8で行った変形は次の３つである。これらは連立１次方程式の基本変形と呼ばれる。

(1) １つの式を何倍か（ 6= 0倍）する。

(2) ２つの式を入れ替える。

(3) １の式に他の式の何倍かを加える。
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基本変形 (1)–(3)は可逆的であるので、連立１次方程式の解集合を変更しない。上のように
基本変形 (1)–(3)を用いて連立１次方程式を解く方法は掃き出し法（Gaussian elimination）
と呼ばれる。

問題 6.9. 連立１次方程式の拡大行列を用いて、問題 6.8をもう一回考える。

(I)

(

2 3 8

1 2 5

)

(II)

(

0 −1 −2

1 2 5

)

1 + 2 × (−2)

(III)

(

0 −1 −2

1 0 1

)

2 + 1 × 2

(IV)

(

1 0 1

0 −1 −2

)

1 と 2 を入れ替えた

(V)

(

1 0 1

0 1 2

)

2 × (−1)

ここで 1 と 2 その１つ前の拡大行列の第１行と第２行を意味する。

定義 6.10. 行列の次の３つの変形を行基本変形（elementary row operations）と呼ばれる。

(1) １つの行を何倍か（ 6= 0倍）する。

(2) ２つの行を入れ替える。

(3) １の行に他の行の何倍かを加える。

例 6.11. 次の連立１次方程式を、拡大係数行列の基本変形を用いて解いてみる。


















2x + 3y − z = −3

−x + 2y + 2z = 1

x + y − z = −2

拡大係数行列とその基本変形を次のように略記して縦に書くと分かりやすい。 1 、 2 、 3

は、その１つ上の行列の第１行、第２行、第３行をする。
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2 3 −1 −3

−1 2 2 1

1 1 −1 −2

1 + 3 × (−2)

2 + 3

0 1 1 1

0 3 1 −1

1 1 −1 −2

1 と 3 の入れ替え

1 1 −1 −2

0 3 1 −1

0 1 1 1

1 + 3 × (−1)

2 + 3 × (−3)

1 0 −2 −3

0 0 −2 −4

0 1 1 1

2 × (−1/2)

1 0 −2 −3

0 0 1 2

0 1 1 1

2 と 3 の入れ替え

1 0 −2 −3

0 1 1 1

0 0 1 2

1 + 3 × 3

2 + 3 × (−1)

1 0 0 1

0 1 0 −1

0 0 1 2

これを連立１次方程式に戻して


















x = 1

y = −1

z = 2

すなわち （答）



















x = 1

y = −1

z = 2

を得る。
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7 行列の簡約化

定義 7.1. 行列の零ベクトルでない行ベクトルの 0でない左から最初の成分はその行の主成
分（pivot）と呼ばれる。

例 7.2. 次の行列Aの第 1行の主成分は 3、第 2行の主成分は 1、第 4行の主成分は 2である。
第 3行は零ベクトルなので、主成分はない。

A =

















0 3 0 0 1

1 0 3 2 4

0 0 0 0 0

0 0 0 2 1

















定義 7.3. 次の性質を満たす行列は簡約な行列（reduced row echelon matrix）と呼ばれる。

(I) 行ベクトルのうちに零ベクトルがあれば、それ以下の行ベクトルも零ベクトルである。

(II) 零ベクトルでない行ベクトルの主成分は 1である。

(III) 第 i行の主成分を aiji
とすると、j1 < j2 < j3 < . . . となる。

(IV) 各行の主成分を含む列の他の成分は全て 0である。

例 7.4. （簡約な行列の例）








0 1 2 0 7

0 0 0 1 5

0 0 0 0 0









,









0 1 2 0 0

0 0 0 1 0

0 0 0 0 1

















1 0 0 −1 3

0 1 0 −2 2

0 0 1 4 3









,









1 −1 2 0 0

0 0 0 1 0

0 0 0 0 1









例 7.5. （簡約でない行列の例）






1 0 2 −1 3

0 1 0 −2 2

0 0 1 4 3






,







1 −1 2 0 0

0 0 0 1 0

0 0 0 1 0






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定理 7.6. (i) 行列Aに行基本変形を繰り返すことにより、簡約な行列Bができる。

(ii) 簡約な行列BとCは、行列Aに行基本変形を繰り返して得られたものであれば、必ず
B = Cである。

証明後期に示す。

定義 7.7. 行列Aに行基本変形を繰り返した簡約な行列Bは、元の行列Aの簡約化（reduced

row echelon form）とよばれる。

例 7.8. 例 7.2で考えた行列Aを簡約化する。

A =

















0 3 0 0 1

1 0 3 2 4

0 0 0 0 0

0 0 0 2 1

































0 1 0 0 1
3

1 0 3 2 4

0 0 0 0 0

0 0 0 1 1
2

















1 × (1/3)

4 × (1/2)
















1 0 3 2 4

0 1 0 0 1
3

0 0 0 1 1
2

0 0 0 0 0

















1 と 2 を入れ替えた

3 と 4 を入れ替えた

B =

















1 0 3 0 3

0 1 0 0 1
3

0 0 0 1 1
2

0 0 0 0 0

















1 + 3 × (−2)

定義 7.9. 行列Aにおいて、Aの簡約化Bの主成分の個数は、Aの階数（rank）とよばれ、
rank(A)と書かれる。

注 7.10. (1) 行列Aの階数は、簡約化Bの零ベクトルでない行の個数とも定義される。

(2) 一般的に、行列Aの主成分の個数は、Aの階数以上である。
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例 7.11. 例 7.4における行列の階数を計算する。

rank









0 1 2 0 7

0 0 0 1 5

0 0 0 0 0









= 2 , rank









0 1 2 0 0

0 0 0 1 0

0 0 0 0 1









= 3

rank









1 0 0 −1 3

0 1 0 −2 2

0 0 1 4 3









= 3 , rank









1 −1 2 0 0

0 0 0 1 0

0 0 0 0 1









= 3

例 7.12. 例 7.5における行列の階数を計算する。

rank







1 0 2 −1 3

0 1 0 −2 2

0 0 1 4 3






= rank









1 0 0 −9 −3

0 1 0 −2 2

0 0 1 4 3









= 3

rank







1 −1 2 0 0

0 0 0 1 0

0 0 0 1 0






= rank







1 −1 2 0 0

0 0 0 1 0

0 0 0 0 0






= 2

命題 7.13. m × n型の行列Aに対して、 rank(A) 6 min{m, n}である。

証明行列Aの簡約化Bもm × n型の行列であり、定義 7.9より、

rank(A) = Bの主成分を含む行の個数 = Bの主成分を含む列の個数

である。よって、
rank(A) 6 Bの行の個数 = m

rank(A) 6 Bの列の個数 = n

であることが分かる。

定義 7.14. 次のm次の正方行列は、基本行列と呼ばれる。

(1) 単位行列Eの第 i行を s倍（ 6= 0倍）した行列 Pi(s)

(2) 単位行列Eの第 i行と第 j行を入れ替えた行列 Ti,j

(3) 単位行列Eの第 i行に第 j行の s倍を加えた行列Ei,j(s)
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例 7.15. （3次の基本変形の例）

P3(s) =











1 0 0

0 1 0

0 0 s











, T2,3 =











1 0 0

0 0 1

0 1 0











, E2,3(s) =











1 0 0

0 1 s

0 0 1











命題 7.16. Aはm × n型の行列とする。

(1) Pi(s)Aは、行列Aの第 i行を s倍した行列と等しい。

(2) Ti,jAは、行列Aの第 i行と第 j行を入れ替えた行列と等しい。

(3) Ei,j(s)Aは、行列Aの第 i行に第 j行の s倍を加えた行列と等しい。

証明定義からすぐ成り立つ。

例 7.17. （基本行列とその行基本変形）Aは 3 × 2型の行列とする。

P3(s)A =











1 0 0

0 1 0

0 0 s





















a11 a12

a21 a22

a31 a32











=











a11 a12

a21 a22

sa31 sa32











T2,3A =











1 0 0

0 0 1

0 1 0





















a11 a12

a21 a22

a31 a32











=











a11 a12

a31 a32

a21 a22











E2,3(s)A =











1 0 0

0 1 s

0 0 1





















a11 a12

a21 a22

a31 a32











=











a11 a12

a21 + sa31 a22 + sa32

a31 a32











命題 7.18. 基本行列は可逆行列である。具体的には、

Pi(s)Pi(1/s) = E = Pi(1/s)Pi(s)

Ti,jTi,j = E

Ei,j(s)Ei,j(−s) = E = Ei,j(−s)Ei,j(s)

である。
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例 7.19. 前回の例 11では、次の拡大行列Aの簡約化Bを計算した。

A =









2 3 −1 −3

−1 2 2 1

1 1 −1 −2









, B =









1 0 0 1

0 1 0 −1

0 0 1 2









基本行列を用いて、その計算は次のように表される。

B = E2,3(−1)E1,3(3)T2,3P2(−1/2)E2,3(−3)E1,3(−1)T1,3E2,3(1)E1,3(−2)A
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8 連立１次方程式を解く

前回勉強した簡約化を用いて、連立１次方程式を解く。まず、二つの例を考えてみる。

次の連立１次方程式を解いてみる。

(1)































x1 − x3 − 2x5 = 1

x2 + x3 + x5 = −2

−x1 + x3 + x4 + x5 = 3

2x1 + x2 − x3 − 3x5 = 1

連立１次方程式の拡大係数行列 (A | b)を簡約化する。

(A | b) =

















1 0 −1 0 −2 1

0 1 1 0 1 −2

−1 0 1 1 1 3

2 1 −1 0 −3 1

































1 0 −1 0 −2 1

0 1 1 0 1 −2

0 0 0 1 −1 4

0 1 1 0 1 −1

















3 + 1

4 + 1 × (−2)

















1 0 −1 0 −2 1

0 1 1 0 1 −2

0 0 0 1 −1 4

0 0 0 0 0 1

















4 + 2 × (−1)

















1 0 −1 0 −2 0

0 1 1 0 1 0

0 0 0 1 −1 0

0 0 0 0 0 1

















1 + 4 × (−1)

2 + 4 × 2

3 + 4 × (−4)
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よって、連立１次方程式 (1)の解集合と次の連立１次方程式 (1′)の解集合は等しい。

(1′)































x1 − x3 − 2x5 = 0

x2 + x3 + x5 = 0

x4 − x5 = 0

0 = 1

しかし、0 6= 1なので、連立１次方程式 (1′)は、解を持たない。

次の連立１次方程式を考えてみる。

(2)



















x1 − 2x2 + 3x4 = 2

x1 − 2x2 + x3 + 2x4 + x5 = 2

2x1 − 4x2 + x3 + 5x4 + 2x5 = 5

連立１次方程式の拡大係数行列 (A | b)を簡約化する。

(A | b) =











1 −2 0 3 0 2

1 −2 1 2 1 2

2 −4 1 5 2 5





















1 −2 0 3 0 2

0 0 1 −1 1 0

0 0 1 −1 2 1











2 + 1 × (−1)

3 + 1 × (−2)










1 −2 0 3 0 2

0 0 1 −1 1 0

0 0 0 0 1 1











3 + 2 × (−1)










1 −2 0 3 0 2

0 0 1 −1 0 −1

0 0 0 0 1 1











2 + 3 × (−1)

よって、連立１次方程式 (2)の解集合は、次の連立１次方程式 (2′)の解集合と等しい。

(2′)



















x1 − 2x2 + 3x4 = 2

x3 − x4 = −1

x5 = 1
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連立１次方程式 (2′)は解を持ち、次のように表される。主成分を含まない列に対応する変数
x2, x4の値を任意に定めると、主成分を含む列と対応する変数 x1, x3, x5は、一意的に決まる。
すなわち、x2 = c1と x4 = c2とおくと、方程式 (2)の解集合は、次のように表される。

x =























x1

x2

x3

x4

x5























=























2 + 2c1 − 3c2

c1

−1 + c2

c2

1























=























2

0

−1

0

1























+ c1























2

1

0

0

0























+ c2























−3

0

1

1

0























(c1, c2 ∈ R)

連立１次方程式 (1)において、簡約化した拡大係数行列のもっとも右の列は、主成分を含む
列なので、解を持たない。連立１次方程式 (2)において、簡約化した拡大係数行列のもっと
も右の列は、主成分を含まない列なので、解を持つ。

階数の定義より、次の性質 (i)–(iv)に対して、(i)と (ii)は同値、(iii)と (iv)は同値である。

(i) 拡大係数行列 (A | b)の簡約化のもっとも右の列は、主成分を含む列である。

(ii) rank(A | b) = rank(A) + 1

(iii) 拡大係数行列 (A | b)の簡約化のもっとも右の列は、主成分を含まない列である。

(iv) rank(A | b) = rank(A)

定理 8.1. 連立１次方程式Ax = bとその拡大係数行列 (A | b)において、次の性質 (i)–(ii)

は同値である。

(i) Ax = bが解を持つ。

(ii) rank(A | b) = rank(A)

証明. 係数行列Aをm × n型の行列とする。まず、性質 (ii)を仮定し、性質 (i)を示す。拡
大係数行列 (A | b)を簡約化した行列を (C | d)とし、その行列の主成分を含む列と主成
分を含まない列をそれぞれ j1 < j2 < · · · < jr と k1 < k2 < · · · < ks+1 とする。このと
き、r + s + 1 = n + 1であり、行列 (C | d)のもっとも右の列 dは主成分を含まないので、
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ks+1 = n + 1であることが分かる。さらに、連立１次方程式Ax = bの解集合と次の連立１
次方程式の解集合は等しい。



































xj1 = d1 − c1,k1
xk1

− c1,k2
xk2

− · · · − c1,ks
xks

xj2 = d2 − c2,k1
xk1

− c2,k2
xk2

− · · · − c2,ks
xks

...

xjr
= dr − cr,k1

xk1
− cr,k2

xk2
− · · · − cr,ks

xks

よって、変数 xk1
, xk2

, . . . , xks
の値を任意に定めると、変数 xj1 , xj2, . . . , xjr

は一意的に決ま
る。特に、連立１次方程式Ax = bが解を持つことが分かる。すなわち、性質 (i)が成り立つ。

逆に、性質 (ii)が満たされていないとき、拡大係数行列 (A | b)の簡約化 (C | d)のもっとも
右の列 dは、主成分を含むことが分かる。行列 (C | d)の主成分を含む列と主成分を含まな
い列をそれぞれ j1 < j2 < · · · < jr+1と k1 < k2 < · · · < ksとする。このとき、連立１次方程
式Ax = bの解集合と次の連立１次方程式の解集合は等しい。



















































xj1 = d1 − c1,k1
xk1

− c1,k2
xk2

− · · · − c1,ks
xks

xj2 = d2 − c2,k1
xk1

− c2,k2
xk2

− · · · − c2,ks
xks

...

xjr
= dr − cr,k1

xk1
− cr,k2

xk2
− · · · − cr,ks

xks

1 = 0

しかし、この連立１次方程式が解を持たないので、性質 (i)も満たされていないことが分か
る。よって、定理を示した。

補遺 8.2. m個の方程式からなる n変数の連立１次方程式 Ax = bとそのm × (n + 1)型の
拡大係数行列 (A | b)において、

rank(A | b) = rank(A)

を仮定し、その階数を rとする。

(i) r = nのとき、連立１次方程式Ax = bは、ただ一つの解を持つ。

(i) r < nのとき、連立１次方程式Ax = bの解集合

{x ∈ R
n | Ax = b} ⊂ R

n
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は、n − r個のパラメーター c1, c2, . . . , cn−rで表される。

証明. 拡大係数行列 (A | b)を簡約化した行列を (C | d)とする。

(i) 仮定 r = nより、C = Enであることが分かる。従って、連立１次方程式Ax = bの解集
合と連立１次方程式Enx = dの解集合は等しいので、ただ一つの解 x = dが存在する。

(ii) 行列Cの主成分を含まない列と対応する変数 xk1
, xk2

, . . . , xkn−r
の値を任意に定めると、

主成分を含む列と対応する変数 xj1 , xj2, . . . , xjr
は、一意的に決まる。

例 8.3. 次の連立１次方程式を解いてみる。






x1 − 2x2 + 3x4 = 3

x1 − x2 + x3 + 2x4 = −2

拡大係数行列 (A | b)を簡約化する。

(A | b) =

(

1 −2 0 3 3

1 −1 1 2 −2

)

(

1 −2 0 3 3

0 1 1 −1 −5

)

2 + 1 × (−1)

(

1 0 2 1 −7

0 1 1 −1 −5

)

1 + 2 × 2

これを見ると、rank(A | b) = rank(A) = 2であることが分かる。よって、補遺 8.2の (ii)よ
り、連立１次方程式Ax = bの解集合は、n − r = 4 − 2 = 2個のパラメーター c1, c2で表さ
れる。簡約化した拡大係数行列と対応する連立１次方程式は、次のように得られる。







x1 + 2x3 + x4 = −7

x2 + x3 − x4 = −5

よって、解集合 {x ∈ R
4 | Ax = b}は、次のように表される。

x =

















−7 − 2c1 − c2

−5 − c1 + c2

c1

c2

















=

















−7

−5

0

0

















+ c1

















−2

−1

1

0

















+ c2

















−1

1

0

1

















(c1, c2 ∈ R
2)
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9 可逆行列

今回、正方行列しか考えない。

補題 9.1. n次の正方行列Aにおいて、次の性質は同値である。

(i) AC = Enを満たす n次の正方行列Cが存在する。

(ii) 任意の n次の列ベクトル bに対して、連立１次方程式Ax = bは解を持つ。

証明. (i)⇒(ii) : x = C bとすると、

Ax = A(C b) = (AC)b = Enb = b

が成り立つ。

(ii)⇒(i)：n次列ベクトル e1, . . . , enを

e1 =

















1

0
...

0

















, e2 =

















0

1
...

0

















, · · · , en =

















0

0
...

1

















とおくと、仮定より、連立１次方程式Ax = e1, Ax = e2, . . . , Ax = enは解を持つ。その解
を各々x = c1, x = c2, . . . , x = cnとし、

C =
(

c1 c2 · · · cn

)

とおくと、Cは n次の正方行列で、

AC = A
(

c1 c2 · · · cn

)

=
(

Ac1 Ac2 · · · Acn

)

=
(

e1 e2 · · · en

)

= En

となる。

補遺 9.2. 正方行列Aにおいて、AC = EnとAC ′ = Enを満たす正方行列CとC ′に対して、
必ずC = C ′である。
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証明. AC = Enを満たす正方行列 C が存在するので、補題 9.1より、任意の列ベクトル b

に対して、連立１次方程式Ax = bは、解を持つ。よって、rank(A) = rank(A | b) = nで
あることが分かる。従って、前回示した補遺 4より、任意の列ベクトル bに対して、連立１
次方程式 Ax = bは、ただ一つの解を持つ。特に、連立１次方程式 Ax = e1, Ax = e2, . . . ,

Ax = enは、各々ただ一つの解 x = c1, . . . , x = cnを持つ。よって、AC = Enを満たす正
方行列C =

(

c1 c2 · · · cn

)

にも、ただ一つが存在する。

命題 9.3. 最大階数 nの正方行列Aにおいて、行列 (A | En)の簡約化を (En | C)とすると、
n次の正方行列Cは、AC = Enを満たす。

証明. 確かに、Cを
(

c1 c2 · · · cn

)

と書くと、連立１次方程式Ax = ejと x = cjの解集
合は等しいので、AC = Enが成り立つ。

定理 9.4. n次正方行列AとCにおいて、

AC = En ⇒ CA = En

証明. まず、Aは基本行列である場合を考える。

(1) A = Pi(s)のとき、C = Pi(1/s)なので、CA = Pi(1/s)Pi(s) = Enともなる。

(2) A = Ti,jのとき、C = Ti,jなので、CA = AC = Enともなる。

(3) A = Ei,j(s)のとき、C = Ei,j(−s)なので、CA = Ei,j(−s)Ei,j(s) = Enともなる。

一般的に、AC = Enを満たす行列Cが存在するとき、Aの簡約化はEnとなるので、ある基
本行列C1, C2, . . . , CN に対して、

CNCN−1 . . . C2C1A = En

であることが分かる。従って、CiDi = Enを満たす正方行列Diにおいて、

A = D1D2 . . .DN−1DN

と表される。以上の場合から、

ACNCN−1 . . . C2C1 = D1D2 . . .DN−1DNCNCN−1 . . . C2C1 = En

が成り立つ。よって、C = CNCN−1 . . . C2C1で、CA = Enであることが分かる。
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定義 9.5. 正方行列Aをおいておく。

(1) AC = En = CAを満たす正方行列Cは、Aの逆行列と呼ばれ、A−1と書かれる。

(2) Aを逆行列を持つとき、可逆行列あるいは正則行列と呼ばれる。

定理 9.4より、AC = Enを満たす正方行列 Cは、必ずCA = Enとも満たすので、Aの逆行
列となる。

例 9.6. 命題 9.3を用いて、次の正方行列Aの逆行列A−1を計算する。

A =











1 −1 0

3 −1 2

2 2 1











行列 (A | E3)を簡約化する。

(A | E3) =









1 −1 0 1 0 0

3 −1 2 0 1 0

2 2 1 0 0 1

















1 −1 0 1 0 0

0 2 2 −3 1 0

0 4 1 −2 0 1









2 + 1 × (−3)

3 + 1 × (−2)








1 −1 0 1 0 0

0 2 2 −3 1 0

0 0 −3 4 −2 1









3 + 2 × (−2)








1 −1 0 1 0 0

0 1 1 −3
2

1
2 0

0 0 1 −4
3

2
3

−1
3









2 × (1/2)

3 × (−1/3)








1 −1 0 1 0 0

0 1 0 −1
6

−1
6

2
6

0 0 1 −4
3

2
3

−1
3









2 + 3 × (−1)

(E3 | A−1) =









1 0 0 5
6

−1
6

2
6

0 1 0 −1
6

−1
6

2
6

0 0 1 −4
3

2
3

−1
3









1 + 2
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よって、Aの逆行列は、次の行列となる。

A−1 =
1

6











5 −1 2

−1 −1 2

−8 4 −2










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10 行列式の定義

今回も、正方行列しか考えない。

定義 10.1. 帰納法を用いて、n次の正方行列

A =

















a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

















の行列式（determinant）は、次のように定義される。まず、n = 1のとき、

det(A) = a11

と定義される。それから、n − 1次の正方行列の行列式が定義されているとし、n次の正方
行列の行列式は、次の公式で定義される。

det(A) =

n
∑

j=1

(−1)1+ja1j det(A1j)

ここで、A1jは、行列Aから第 1行と第 j列を除いた n − 1次の正方行列である。

注 10.2. 正方行列Aの行列式は、|A|とも書かれる。

例 10.3. n = 2のとき、

A11 =





a11 a12

a21 a22



 = (a22)

A12 =





a11 a12

a21 a22



 = (a21)

なので、
det(A) = a11 det(A11) − a12 det(A12)

= a11 det(a22) − a12 det(a21)

= a11a22 − a12a21

となる。
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例 10.4. n = 3のとき、

A11 =











a11 a12 a13

a21 a22 a23

a31 a32 a33











=





a22 a23

a32 a33





A12 =











a11 a12 a13

a21 a22 a23

a31 a32 a33











=





a21 a23

a31 a33





A13 =











a11 a12 a13

a21 a22 a23

a31 a32 a33











=





a21 a22

a31 a32





なので、

det(A) = a11 det(A11) − a12 det(A12) + a13 det(A13)

= a11 det

(

a22 a23

a32 a33

)

− a12 det

(

a21 a23

a31 a33

)

+ a13 det

(

a21 a22

a31 a32

)

= a11(a22a33 − a23a32) − a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

となる。

例 10.5. 次の行列式を計算してみる。

det











2 1 3

0 2 0

3 1 4











= 2 · det











2 1 3

0 2 0

3 1 4











− 1 · det











2 1 3

0 2 0

3 1 4











+ 3 · det











2 1 3

0 2 0

3 1 4











= 2 · det





2 0

1 4



− 1 · det





0 0

3 4



+ 3 · det





0 2

3 1





= 2 · 8 − 1 · 0 + 3 · (−6)

= −2

定義 10.1でおける公式は、「第１行で展開された行列式」と呼ばれる。次の定理より、第 i

行で展開された行列式または第 j列で展開された行列式は、同じ結果を与える。
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定理 10.6. n次の正方行列Aをおいておく。

(1) （第 i行で展開された行列式）

det(A) =

n
∑

j=1

(−1)i+jaij det(Aij)

(2) （第 j列で展開された行列式）

det(A) =

n
∑

i=1

(−1)i+jaij det(Aij)

ここで、Aijは、行列Aから第 i行と第 j列を除いて n − 1正方行列である。

注 10.7. 定理 10.6における符号 (−1)i+jは、次のように表される。
















+ − + · · ·
− + − · · ·
+ − + · · ·
...

...
...

. . .

















系 10.8. n次の正方行列Aにおいて、

det(tA) = det(A)

である。

証明. 帰納法を用いて示す。まず、n = 1のとき、系は自明なので、n− 1のときを正しいと
仮定し、nのときを示せばよい。転置行列の定義より、tAの (i, j)成分とAの (j, i)成分は等
しい、(tA)ijと t(Aji)は等しいことが分かる。従って、行列式の定義より、転置行列の行列
式は、次のように表される。

det(tA) =

n
∑

j=1

(−1)1+jaj1 det(t(Aj1))

今、帰納法の仮定より、det(t(Aj1)) = det(Aj1)なので、

det(tA) =
n
∑

j=1

(−1)1+jaj1 det(Aj1) =
n
∑

i=1

(−1)i+1ai1 det(Ai1)

が得る。右辺は、行列Aの第 1列で展開された行列式なので、定理 10.6より、右辺はdet(A)

であることが分かる。すなわち、det(tA) = det(A)が成り立つ。帰納法より、任意の自然数
nに対して、系は正しい。
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例 10.9. 第 2行で展開し、例 10.5における行列式を、もう一回計算してみる。

det











2 1 3

0 2 0

3 1 4











= 2 · det











2 1 3

0 2 0

3 1 4











= 2 · det





2 3

3 4



 = 2 · (8 − 9) = −2

例 10.10. 次の行列Aの行列式 det(A)を計算してみる。

A =

















2 −1 0 3

1 2 2 0

0 3 1 2

3 2 0 −3

















第 3列には、0を 2個あるので、第 3列で展開して計算する。

det(A) = −2 · det

















2 −1 0 3

1 2 2 0

0 3 1 2

3 2 0 −3

















+ 1 · det

















2 −1 0 3

1 2 2 0

0 3 1 2

3 2 0 −3

















= −2 · det











2 −1 3

0 3 2

3 2 −3











+ 1 · det











2 −1 3

1 2 0

3 2 −3











行列式 det(A23)と det(A33)を、それぞれ第 1列と第 2行で展開して計算する。

det











2 −1 3

0 3 2

3 2 −3











= 2 · det











2 −1 3

0 3 2

3 2 −3











+ 3 · det











2 −1 3

0 3 2

3 2 −3











= 2 · det





3 2

2 −3



+ 3 · det





−1 3

3 2





= 2 · (−13) + 3 · (−11)

= −59
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det











2 −1 3

1 2 0

3 2 −3











= −1 · det











2 −1 3

1 2 0

3 2 −3











+ 2 · det











2 −1 3

1 2 0

3 2 −3











= −1 · det





−1 3

2 −3



 + 2 · det





2 3

3 −3





= −1 · (−3) + 2 · (−15)

= −27

よって、
det(A) = −2 · (−59) + 1 · (−27) = 91

が得る。

例 10.11 (行列式の幾何的な記述). n = 2のとき、

| det(a1 a2)| =ベクトル a1と a2で定義された平行四辺形の面積

である。さらに、行列式 det(a1 a2)の符号は、次のように与えられる。

::ttttttttttttttttttttt

WW/////////////

ttttttttttttttttttttt/////////////

a1

a2

det(a1 a2) > 0

::ttttttttttttttttttttt

WW/////////////

/////////////ttttttttttttttttttttt

a2

a1

det(a1 a2) < 0

同様に、n = 3のとき、

| det(a1 a2 a3)| =ベクトル a1, a2と a3で定義された平行六面体の体積
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である。さらに、行列式 det(a1 a2 a3)の符号は、次のように与えられる。

77ooooooooooooo

JJ�������������������

ddJJJJJJJJJJJJJJJJJJJJJ

��
��
��
��
��
��
��
��
��
�

ooooooooooooo

JJJJJJJJJJJJJJJJJJJJJ

��
��
��
��
��
��
��
��
��
�

JJJJJJJJJJJJJJJJJJJJJooooooooooooo

a1

a2

a3

det(a1 a2 a3) > 0

77ooooooooooooo

JJ�������������������

ddJJJJJJJJJJJJJJJJJJJJJ

��
��
��
��
��
��
��
��
��
�

ooooooooooooo

JJJJJJJJJJJJJJJJJJJJJ

��
��
��
��
��
��
��
��
��
�

JJJJJJJJJJJJJJJJJJJJJooooooooooooo

a1

a3

a2

det(a1 a2 a3) < 0

命題 10.12. 単位行列Enの行列式は、

det(En) = 1

である。

証明. 帰納法を用いて示す。まず、n = 1のとき、det(E1) = 1なので、命題は自明なので、
n − 1のときを正しいと仮定し、nのときを示せばよい。しかし、定義 10.1より、

det(En) = 1 · det((En)11) = 1 · det(En−1) = 1

であることが分かる。帰納法より、任意の nに対して、命題は正しい。
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11 行列式の性質

定理 11.1. 次の性質 (1)—(4)を満たす写像

det : Mn(R) → R

は、ただ一つが存在する。

(1) 任意の 1 6 j 6 nと列ベクトル a1, . . . , aj−1, aj+1, . . . , an、xと yに対して、

det
(

· · · aj−1 x + y aj+1 · · ·
)

= det
(

· · · aj−1 x aj+1 · · ·
)

+ det
(

· · · aj−1 y aj+1 · · ·
)

である。

(2) 任意の 1 6 j 6 n、列ベクトル a1, . . . , aj−1, aj+1, . . . , an、xとスカラー sに対して、

det
(

a1 · · · aj−1 sx aj+1 · · · an

)

= s det
(

a1 · · · aj−1 x aj+1 · · · an

)

である。

(3) 任意の 1 6 j < k 6 nと列ベクトル a1, . . . , anに対して、

「 aj = ak　ならば　 det
(

a1 · · · aj · · · ak · · · an

)

= 0 」

が成立する。

(4) 単位行列Enに対して、
det(En) = 1

である。

定理 11.1を証明する前に、次の補題を示す。

補題 11.2. 定理 11.1の性質 (1)—(3)を満たす写像

det : Mn(R) → R

に対して、次の性質 (i)—(ii)が成り立つ。
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(i) 任意の 1 6 j < k 6 nと列ベクトル a1, . . . , anに対して、

det
(

· · · aj−1 aj aj+1 · · · ak−1 ak ak+1 · · ·
)

= − det
(

· · · aj−1 ak aj+1 · · · ak−1 aj ak+1 · · ·
)

である。

(ii) 任意の 1 6 j < k 6 n、列ベクトル a1, . . . , anとスカラー sに対して、

det
(

· · · aj−1 aj + sak aj+1 · · · ak−1 ak ak+1 · · ·
)

= det
(

· · · aj−1 aj aj+1 · · · ak−1 ak ak+1 · · ·
)

= det
(

· · · aj−1 aj aj+1 · · · ak−1 saj + ak ak+1 · · ·
)

である。

証明. 性質 (1)と (3)を用いて (i)は、次の計算から成り立つ。

det
(

· · · aj · · · ak · · ·
)

+ det
(

· · · ak · · · aj · · ·
)

(3)
= det

(

· · · aj · · · aj · · ·
)

+ det
(

· · · aj · · · ak · · ·
)

+ det
(

· · · ak · · · aj · · ·
)

+ det
(

· · · ak · · · ak · · ·
)

(1)
= det

(

· · · aj · · · aj + ak · · ·
)

+ det
(

· · · ak · · · aj + ak · · ·
)

(1)
= det

(

· · · aj + ak · · · aj + ak · · ·
)

(3)
= 0

続いて、性質 (1)—(3)を用いて、

det
(

· · · aj + sak · · · ak · · ·
)

(1)
= det

(

· · · aj · · · ak · · ·
)

+ det
(

· · · sak · · · ak · · ·
)

(2)
= det

(

· · · aj · · · ak · · ·
)

+ s det
(

· · · ak · · · ak · · ·
)

(3)
= det

(

· · · aj · · · ak · · ·
)

が得る。同様に、

det
(

· · · aj · · · saj + ak · · ·
)

= det
(

· · · aj · · · ak · · ·
)

が成り立つ。
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定理 11.1の証明. 最初に、帰納法を用いて、性質 (1)—(4)を満たす写像の一意性を示す。ま
ず、n = 1のとき、

det(a11) = det(a11 · 1)
(2)
= a11 · det(1)

(4)
= a11 · 1 = a11

が得るので、n = r − 1のときは正しいと仮定し、n = rのときを示せばよい。今、

a1 = a11e1 + · · ·+ ar1er

なので、性質 (1)—(2)から、

det
(

a1 a2 · · · ar

)

=
r
∑

i=1

ai1 det
(

ei a2 · · · ar

)

が成り立つ。よって、次の等式 11.3を示せばよい。

(−1)i+1 det
(

ei a2 · · · ar

)

= det(Ai1) (11.3)

このために、補題 11.2を用いて、等式 (11.3)の左辺を次のように表す。

det
(

ei a2 · · · ar

)

= det
(

ei a2 − ai2ei · · · ar − airei

)

= det(Ãi1)

ここで、r − 1次の正方行列Bにおいて、B̃は、次の r次の正方行列である。

B̃ =



































0 b1,1 · · · b1,r−1

...
...

. . .
...

0 bi−1,1 · · · bi−1,r−1

1 0 · · · 0

0 bi,1 · · · bi,r−1

...
...

. . .
...

0 br−1,1 · · · br−1,r−1



































今、D(B) = (−1)i+1 det(B̃)で定義された写像D : Mr−1(R) → Rは、性質 (1)—(4)を満たす
ので、帰納法の仮定より、D(B) = det(B)であることが分かる。よって、等式 (11.3)が成り
立つ。これで、性質 (1)—(4)を満たす写像の一意性を示した。

続いて、帰納法を用いて、定義 10.1で定義された写像det : Mn(R) → Rは、性質 (1)—(4)を
満たすことを示す。n = 1のときは自明なので、n = r − 1のときは正しいと仮定し、n = r

のときを示せばよい。定義 10.1より、r次の正方行列Aに対して、

det(A) =
r
∑

h=1

(−1)1+ha1h det(A1h)
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である。r次の列ベクトル aにおいて、âを次の r − 1次の列ベクトルとする。

â =

















a2

a3

...

ar

















今、性質 (1)は、次の計算から成り立つ。

det
(

· · · aj−1 x + y aj+1 · · ·
)

=

j−1
∑

h=1

(−1)1+ha1h det
(

· · · âh−1 âh+1 · · · âj−1 x̂ + ŷ âj+1 · · ·
)

+ (−1)1+j(xj + yj) det
(

· · · âj−1 âj+1 · · ·
)

+
r
∑

h=j+1

(−1)1+ha1h det
(

· · · âj−1 x̂ + ŷ âj+1 · · · âh−1 âh+1 · · ·
)

=

j−1
∑

h=1

(−1)1+ha1h det
(

· · · âh−1 âh+1 · · · âj−1 x̂ âj+1 · · ·
)

+ (−1)1+jxj det
(

· · · âj−1 âj+1 · · ·
)

+

r
∑

h=j+1

(−1)1+ha1h det
(

· · · âj−1 x̂ âj+1 · · · âh−1 âh+1 · · ·
)

+

j−1
∑

h=1

(−1)1+ha1h det
(

· · · âh−1 âh+1 · · · âj−1 ŷ âj+1 · · ·
)

+ (−1)1+jyj det
(

· · · âj−1 âj+1 · · ·
)

+
r
∑

h=j+1

(−1)1+ha1h det
(

· · · âj−1 ŷ âj+1 · · · âh−1 âh+1 · · ·
)

= det
(

· · · aj−1 x aj+1 · · ·
)

+ det
(

· · · aj−1 y aj+1 · · ·
)

性質 (2)は、同様に示される。
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次に、性質 (3)を示す。まず、aj = aj+1のとき、

det
(

a1 · · · aj aj+1 · · · an

)

=

j−1
∑

h=1

(−1)1+ha1h det
(

· · · âh−1 âh+1 · · · âj âj+1 · · ·
)

+ (−1)1+ja1j det
(

· · · âj−1 âj+1 âj+2 · · ·
)

+ (−1)1+j+1a1,j+1 det
(

· · · âj−1 âj âj+2 · · ·
)

+
n
∑

h=j+2

(−1)1+ha1h det
(

· · · âj âj+1 · · · âh−1 âh+1 · · ·
)

が消えている。なぜなら、右辺の第２行と第３行は逆になって、帰納法の仮定より、第１行
と第２行が消えている。今、補題 11.2の証明は、任意の列ベクトル a1, . . . , anに対して、

det
(

· · · aj−1 aj aj+1 aj+2 · · ·
)

= − det
(

· · · aj−1 aj+1 aj aj+2 · · ·
)

であることを示す。一般的に、ある 1 6 j < k 6 nに対して、

det
(

· · · aj−1 aj aj+1 · · · ak−1 ak ak+1 · · ·
)

= (−1)k−j−1 det
(

· · · aj−1 aj+1 · · · ak−1 aj ak ak+1 · · ·
)

が得る。特に、aj = akのとき、

det
(

· · · aj−1 aj aj+1 · · · ak−1 ak ak+1 · · ·
)

= 0

であることが分かる。よって、性質 (3)を示した。

性質 (4)は、命題 10.12で示したので、定理が成り立つ。

定理 11.4. n次の正方行列Aをおいておく。

(1) （第 i行で展開された行列式）　 det(A) =

n
∑

j=1

(−1)i+jaij det(Aij)

(2) （第 j列で展開された行列式）　 det(A) =
n
∑

i=1

(−1)i+jaij det(Aij)

ここで、Aijは、行列Aから第 i行と第 j列を除いて n − 1正方行列である。
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証明. (1) 定理 11.1の証明と同じように、第 i行で展開された行列式

D(A) =
n
∑

j=1

(−1)i+jaij det(Aij)

は、定理 11.1の性質 (1)—(4)を満たすことが示せる。よって、一意性より、

D(A) = det(A)

であることが分かる。

(2) 補題 11.2の (i)より、j = 1を仮定すればよい。このとき、示したい等式

det(A) =
n
∑

i=1

(−1)i+1ai1 det(Ai1)

は、定理 11.1の証明における等式 (11.3)から成り立つ。

定理 11.5. n次の正方行列AとBに対して、

det(AB) = det(A) det(B)

である。

証明. det(A) 6= 0のとき、D(B) = det(AB)/ det(A)で定義された写像D : Mn(R) → Rは、
定理 11.1の性質 (1)—(4)を満たすので、D(B) = det(B)であることが分かる。

det(A) = 0のとき、D(B) = det(B) − det(AB)で定義された写像D : Mn(R) → Rは、定
理 11.1の性質 (1)—(4)を満たすので、D(B) = det(B)であることが分かる。

注 11.6. 特に、det(AB) = det(BA)である。

正方行列Aにおいて、その行基本変形を思い出す。

(1) 行列 Pi(s)Aは、行列Aの第 i行を s倍（s 6= 0）とした行列である。

(2) 行列 Ti,jAは、行列Aの第 i行と第 j行を入れ替えた行列である。

(3) 行列Ei,j(s)Aは、行列Aの第 i行に第 j行（i 6= j）の s倍を加えた行列である。

練習問題その１０の問題３で、det(Pi(s)) = s、det(Ti,j) = −1と det(Ei,j(s)) = 1を示した
ので、定理 12.4を用いて、次の結果が成り立つ。
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定理 11.7. 正方行列Aにおいて、次の性質 (1)—(3)が成り立つ。

(1) det(Pi(s)A) = s det(A)

(2) det(Ti,jA) = − det(A)

(3) det(Ei,j(s)A) = det(A)

練習問題その１０の問題２で、次の結果を示した。

命題 11.8. n次の三角行列Aに対して、

det(A) = a11a22 . . . ann

である。

定理 11.7と命題 11.8を使うと、行列式の計算が、より簡単に計算できる。

例 11.9. (1)

∣

∣

∣

∣

∣

∣

∣

∣

0 0 4

0 −5 7

3 2 1

∣

∣

∣

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

∣

∣

∣

∣

3 2 1

0 −5 7

0 0 4

∣

∣

∣

∣

∣

∣

∣

∣

1 と 3 を入れ替えた

= −3 · (−5) · 4 = 22 · 3 · 5 = 60

(2)

∣

∣

∣

∣

∣

∣

∣

∣

2 16 3

4 8 −6

8 8 12

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

2 16 3

0 −24 −12

0 −56 0

∣

∣

∣

∣

∣

∣

∣

∣

2 + 1 × (−2)

3 + 1 × (−4)

=

∣

∣

∣

∣

∣

∣

∣

∣

2 16 3

0 −24 −12

0 0 28

∣

∣

∣

∣

∣

∣

∣

∣ 3 + 2 × (−7
3
)

= 2 · (−24) · 28 = −26 · 3 · 7 = −1344
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(3)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 −1 1 −1

1 −1 1 1 1

1 1 −1 1 −1

−1 1 1 1 1

1 1 1 −1 −1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 −1 1 −1

0 0 2 0 2

0 2 0 0 0

0 0 0 2 0

0 2 2 2 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 + 1 × (−1)

3 + 1 × (−1)

4 + 1

5 + 1 × (−1)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 −1 1 −1

0 0 2 0 2

0 2 0 0 0

0 0 0 2 0

0 0 2 2 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣ 5 + 3 × (−1)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 −1 1 −1

0 0 2 0 2

0 2 0 0 0

0 0 0 2 0

0 0 2 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣ 5 + 4 × (−1)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 −1 1 −1

0 0 2 0 2

0 2 0 0 0

0 0 0 2 0

0 0 0 0 −2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣ 5 + 2 × (−1)

= −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 −1 1 −1

0 2 0 0 0

0 0 2 0 2

0 0 0 2 0

0 0 0 0 −2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 と 3 を入れ替え

= −1 · 2 · 2 · 2 · (−2) = 24 = 16.
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12 行列式の性質（復習）・クラーメルの公式

行列式とその性質を復習する。n次の正方行列Aの行列式 det(A)は、帰納法を用いて次の
ように定義される。n = 1のとき、det(A) = a11で、n > 1のとき、

det(A) =

n
∑

j=1

(−1)1+ja1j det(A1j) (12.1)

である。ただし、A1j は、行列 Aから第 1行と第 j列を除いた n − 1次の正方行列である。
公式 (12.1)は、第 1行で展開された行列式と呼ばれる。行列の各性質は、次の定理から成り
立つ。

定理 12.2 (行列式の基本定理). 次の性質 (1)—(4)を満たす写像

det : Mn(R) → R

は、ただ一つが存在する。

(1) 任意の 1 6 j 6 nと列ベクトル a1, . . . , aj−1, aj+1, . . . , an、xと yに対して、

det
(

· · · aj−1 x + y aj+1 · · ·
)

= det
(

· · · aj−1 x aj+1 · · ·
)

+ det
(

· · · aj−1 y aj+1 · · ·
)

である。

(2) 任意の 1 6 j 6 n、列ベクトル a1, . . . , aj−1, aj+1, . . . , an、xとスカラー sに対して、

det
(

a1 · · · aj−1 sx aj+1 · · · an

)

= s det
(

a1 · · · aj−1 x aj+1 · · · an

)

である。

(3) 任意の 1 6 j < k 6 nと列ベクトル a1, . . . , anに対して、

「 aj = ak　ならば　 det
(

a1 · · · aj · · · ak · · · an

)

= 0 」

が成立する。

(4) 単位行列Enに対して、
det(En) = 1

である。
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例 12.3. 行列 2Aは、行列Aの各列を 2倍とした行列なので、

det(A + A) = det(2A) = 2n det(A)

が得る。

例 12.3より、一般的に、det(A + B) 6= det(A) + det(B)である。一方、定理 12.2から、次
の結果が成り立つ。

定理 12.4. n次の正方行列AとBに対して、次の性質 (1)–(2)が成り立つ。

(i) det(AB) = det(A) det(B)

(ii) det(tA) = det(A)

注 12.5. 定理 12.2の性質 (1)–(3)と定理 12.4の性質 (ii)から、次の性質 (1’)–(3’)が成り立つ。

(1) 任意の 1 6 i 6 nと行ベクトル a1, . . . , ai−1, ai+1, . . . , an、xと yに対して、

det



































a1

...

ai−1

x + y

ai+1

...

an



































= det



































a1

...

ai−1

x

ai+1

...

an



































+ det



































a1

...

ai−1

y

ai+1

...

an



































である。

(2) 任意の 1 6 i 6 n、行ベクトル a1, . . . , ai−1, ai+1, . . . , an、xとスカラー sに対して、

det



































a1

...

ai−1

sx

ai+1

...

an



































= s det



































a1

...

ai−1

x

ai+1

...

an



































である。
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(3) 任意の 1 6 i < j 6 nと行ベクトル a1, . . . , anに対して、

「 ai = aj　 ならば　 det



































a1

...

ai

...

aj

...

an



































= 0 」

が成立する。

行列式の基本定理 12.2から、次の便利な結果も成り立つ。

定理 12.6. n次の正方行列Aをおいておく。

(1) （第 i行で展開された行列式）　 det(A) =

n
∑

j=1

(−1)i+jaij det(Aij)

(2) （第 j列で展開された行列式）　 det(A) =

n
∑

i=1

(−1)i+jaij det(Aij)

ここで、Aijは、行列Aから第 i行と第 j列を除いて n − 1正方行列である。

例 12.7 (三角行列の行列式). 次の性質を満たす正方行列Aは、上三角行列と呼ばれる。

i > j ならば aij = 0

転置行列 tAは上三角行列である行列Aは、下三角行列と呼ばれ、A及び tAは上三角行列で
ある行列Aは、三角行列と呼ばれる。定理 12.6より、三角行列Aに対して、行列式 det(A)

は対角成分の積と等しいことが成り立つ。すなわち、Aは n次の三角行列のとき、

det(A) = a11a22 . . . ann

である。

次の便利な定理も、行列式の基本定理から成り立つ。
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定理 12.8. 正方行列Aにおいて、次の性質 (1)—(3)が成り立つ。

(1) 行列Bは、行列Aの第 i行を s倍した行列とすると、

det(B) = s det(A)

である。

(2) 行列Bは、行列Aの第 i行と第 j行を入れ替えた行列とすると、

det(B) = − det(A)

である。

(3) 行列Bは、行列Aの第 i行に第 j行（i 6= j）の s倍を加えた行列とすると、

det(B) = det(A)

である。

同様に、次の性質 (1′)—(3′)が成り立つ。

(1’) 行列Cは、行列Aの第 j列を s倍した行列とすると、

det(C) = s det(A)

である。

(2’) 行列Cは、行列Aの第 j行と第 k列を入れ替えた行列とすると、

det(C) = − det(A)

である。

(3’) 行列Cは、行列Aの第 j列に第 k列（j 6= k）の s倍を加えた行列とすると、

det(C) = det(A)

である。
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定理 12.8と例 12.7を用いて、行列式を簡単に計算することがよくある。

例 12.9. 次の行列式を計算してみる。
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 0 3

0 2 0 0 5

0 13 −2 0 −4

0 −6 1 2 2

8 1 2 3 4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

8 1 2 3 4

0 2 0 0 0

0 13 −2 0 −4

0 −6 1 2 2

0 0 0 0 3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

第 1行と第 5行を入れ替えた

= +

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

8 1 2 3 4

0 −6 1 2 2

0 13 −2 0 −4

0 2 0 0 5

0 0 0 0 3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

第 2行と第 4行を入れ替えた

= −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

8 3 2 1 4

0 2 1 −6 2

0 0 −2 13 −4

0 0 0 2 5

0 0 0 0 5

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

第 2列と第 4列を入れ替えた

= −8 · 2 · (−2) · 2 · 3

= 26 · 3 = 192

定理 12.8を用いて、次の定理を示す。

定理 12.10. n次の正方行列Aに対して、次の性質 (i)–(ii)は同値である。

(i) rank(A) = n

(ii) det(A) 6= 0

証明. 行列Aの簡約化をBとする。定理 12.8より、det(A) 6= 0と det(B) 6= 0は同値である
ことが分かる。簡約化Bは三角行列なので、det(B) 6= 0とB = Enは同値である。また、階
数の定義より、B = Enと rank(A) = nは同値なので、定理を証明した。
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定理 12.11 (クラーメルの公式). n次の正則行列

A =
(

a1 a2 · · · an

)

において、連立１次方程式Ax = bの解は、次のように与えられる。

x =











x1

.

.

.

xn











, xi =
det
(

a1 · · · ai−1 b ai+1 · · · an

)

det
(

a1 · · · ai−1 ai ai+1 · · · an

)

証明. 列ベクトル xが連立１次方程式Ax = bの解であることと列ベクトルbが次１次結合
と表されることは同値である。

b = x1a1 + · · ·+ xnan

従って、定理 12.2の性質 (1)–(2)より、次の等式が得る。

det
(

a1 · · · ai−1 b ai+1 · · · an

)

=
n
∑

j=1

xj det
(

a1 · · · ai−1 aj ai+1 · · ·an

)

さらに、定理 12.2の性質 (3)より、j 6= iのとき、右辺の第 j項はゼロなので、

det
(

a1 · · · ai−1 b ai+1 · · · an

)

= xi det
(

a1 · · · ai−1 ai ai+1 · · ·an

)

が成り立つ。

例 12.12. クレーメルの公式を用いて、次の連立１次方程式を問いでみる。










1 −2 1

1 1 −1

2 −1 3





















x1

x2

x3











=











0

1

2











まず、定理 12.8と例 12.7より、

det











1 −2 1

1 1 −1

2 −1 3











= det











1 −2 1

0 3 −2

0 3 1











= det











1 −2 1

0 3 −2

0 0 3











= 1 · 3 · 3 = 9
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が得る。同様に、次の行列式を計算する。

det











0 −2 1

1 1 −1

2 −1 3











= det











0 −2 1

1 1 −1

0 −3 5











= det











0 0 1

1 −1 −1

0 7 5











= 1 · 1 · 7 = 7

det











1 0 1

1 1 −1

2 2 3











= det











1 0 1

0 1 −2

0 2 1











= det











1 0 1

0 1 −2

0 0 5











= 1 · 1 · 5 = 9

det











1 −2 0

1 1 1

2 −1 2











= det











1 −2 0

0 3 1

0 3 2











= det











1 −2 0

0 3 1

0 0 1











= 1 · 3 · 3 = 9

よって、クレーメルの公式より、










x1

x2

x3











=











7/9

5/9

1/3











が得る。ただし、同じ答えがより簡単に掃き出し法で得る。
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