2. Simple modules

We first introduce the natural notion of maps between modules.

DEFINITION 2.1. Let R be a ring and let M and N be left R-modules. The
map f: M — N is called R-linear if for all z,y € M and a € R,

fla+y) = F@) + F(y)
fla-x)=a- f(x).

The set of R-linear maps f: M — N is denoted by Hompg (M, N).

REMARK 2.2. The set Homp(M,N) of R-linear maps from M to N is an
abelian group with addition defined by (f + ¢)(z) = f(x) + g(x). If M and N are
equal, we also write Endg (M) = Homp (M, M). It is a ring with the product given

by composition (f o g)(z) = f(g(x)).

ExAMPLE 2.3. Let R be a ring and let M and N be free right R-modules with
finite bases X = {z1,...,zpn} and Y = {y1,...,yn}. If f: N — M is an R-linear
map, we let A be the m x n-matrix whose entries a;; € R are defined by

f(yi) = x1a1; + 2202 + -+ + T Qi
Then for a general element y = y181 + - - - + yn s, of N, we find

fy) = fly)s1+ -+ f(yn)sn
= (1011 + -+ Tmam1)s1 + -+ (Z1010 + -+ Tlmn)Sn

=x1(a1151 + -+ ainsn) + -+ T (@m151 + -+ + Gmnsn).

Hence, if y = y151 + -+ - + YnSn, then f(y) = x171 + ... 27, where

1 ai a2 - A1n S1
] a21 a2 -+ Q2n 52
T'm Aml Am2 - Omn Sn

We say that the matrix A represents the R-linear maps f: N — M with respect to
the given bases Y C N and X C M. We note that It is important here to consider
right R-modules and not left R-modules. With left R-modules, we would obtain
“row vectors” instead of “column vectors.”

PROPOSITION 2.4. Suppose that M, N, and P are free right R-modules with
finite bases X = {x1,...,xm}, Y ={y1,...,yn}, and Z = {z1, ..., 2, }, respectively.
Let A be the m X n-matriz that represents the R-linear map f: N — M with respect
to the bases Y C N and X C M, and let B be the n X p-matrix that represents the
R-linear map g: P — N with respect to the bases Z C P and Y C N. Then the
m X p-matrix that represents the R-linear map f o g: P — M with respect to the
bases Z C P and X C M is the product matriz AB.

5



PROOF. Let z = z1t1+- - -+2pt, be an element of P, let g(z) = y151+- - -+ Yn Sn,
and let f(g(z)) = z17m1 + -+ - + TmTm. By the definition of A and B,
71 aix a2 A1n S1
T2 az1 G2 G2n S2
m am1  Am?2 Amn Sn
S1 b11 blg blp tq
S2 bar b2 bap 12
Sn bnl bn2 bnp tp
and hence
1 a1l a12 G1n b1 b1 b1p ty
) a1 Q22 Q2n ba1  bao bap to
T'm Am1  Am2 Amn bnl an bnp tp
The proposition follows. O

COROLLARY 2.5. Let R be a ring and let M be a free right R-module with a
finite basis X = {x1,...,xm}. Then the map

a: My (R) — Endg(M)

that takes the m X m-matriz A to the R-linear map f: M — M represented by A
with respect to the basis X C M is a ring isomorphism.

PrOOF. Every R-linear map f: M — M is represented with respect to the
basis X C M by the unique m X m-matrix defined in Example 2.3. Therefore,
the map « is a bijection. Moreover, the R-linear map represented by the identity
matrix I, is the identity map ids; the R-linear map represented by a sum A + B
of two matrices A and B is the sum f + g of the R-linear maps f and g represented
by the matrices A and B, respectively; and the R-linear map represented by the
matrix product AB is the composition f o g of the R-linear maps f and g. This
shows that « is a ring homomorphism, and hence, a ring isomorphism. O

REMARK 2.6. Let R = (R, +,") be a ring. The opposite ring R°? = (R, +, *)
has the same set R and addition + but the “opposite” product a*xb = b-a. The left
R-module M = (M, +,-) determines the right R°P-module M°P = (M, +, ) with
r*a=a-x. Now, the map f: M — M is R-linear if and only if f: M°P — M°P is
R°P-linear, and therefore, the rings Endr(M) and Endges (M°P) are equal. Hence,
if M is a free left R-module with a finite basis X = {x1,...,z,,}, then the map

a: M, (R°?) — Endg(M)
from Corollary 2.5 is a ring isomorphism.

EXERCISE 2.7. Let A and B be two n X n-matrices with entries in the ring R.
Describe the product A * B of A and B in the opposite ring M, (R)°P.

A division ring R is the simplest kind of ring in the sense that every left R-
module is a free module. We will next consider a slightly more complicated class
of rings that are called simple rings.



DEFINITION 2.8. Let R be a ring and let M and M’ be left R-modules.
(i) The direct sum of M and M’ is the left R-module

MaeM ={(z,2) |z e M,z € M'}
with sum and scalar multiplication defined by
(z,2") + (y,9) = (x +y,2" + )
a-(z,2") = (ax,az’).

(ii) The subset N C M is a submodule if for all x,y € N anda € R, x+y € N
and ax € N.
(iii) The sum of two submodules N, N C M is the submodule

N+ N ={zx+2|zre N,z e N} c M.
(iv) The sum of the submodules N, N’ C M is direct if the map
NeN — N+ N

that to (z,2’) associates x + ' is an isomorphism, or equivalently, if the
intersection N N N is the zero module {0}.

EXAMPLE 2.9. (1) A submodule I C R of the ring R considered as a left
R-module over itself is called a left ideal of R.
(2) Let m,n € Z be integers. Then mZ,nZ C Z are ideals and

mZNnZ = [m,n|Z C mZ +nZ = (m,n)Z

where (m,n) and [m, n] are the greatest common divisor and least common multiple
of m and n, respectively. The sum mZ + nZ is direct if and only if one or both of
m and n are zero.

(3) Let R be a ring and let Ma(R) be the ring of 2 x 2-matrices. The subsets

Eﬂm—{(ig)mmeR}chm
laﬂR)_{(giD|&deR}CA@Uﬂ

are left ideals, and the sum P, 1 (R) + P» 2(R) is direct and equals My (R). Similarly,

the subsets
Qum)={ (5 ) 1averfcanm

0 0
Q22(R) = {(C d) le,d € R} c My(R)
are right ideals, and the sum Q2 1(R) + Q2,2(R) is direct and equal to Ma(R).

S

DEFINITION 2.10. Let R be a ring.

(1) The left R-module S is simple if it is non-zero and if the only submodules
of S are {0} and S.
(2) The left R-module M is semi-simple if it is a direct sum

M =S8+ + 8y

of finitely many simple submodules.



EXAMPLE 2.11. Let D be a division ring. We claim that as a left module over
itself, D is simple. Indeed, let N C D be a non-zero submodule and let a € N be
a non-zero element. If b € D, then b = ba™' - a € N, and hence, N = D which
proves the claim. Let S be any simple left D-module and let z € S be a non-zero
element. We claim that the D-linear map f: D — S defined by f(a) = a - x is
an isomorphism. Indeed, the image f(D) C S is a submodule and it is not zero
since x € f(D). Since S is simple, we necessarily have f(D) = S, so f is surjective.
Similearly, the kernel ker(f) = {a € D | f(a) = 0} C D is a submodule and it is
not all of D since f(1) = x # 0. Since D is simple, we have ker(f) = {0}, so f is
injective. This proves the claim. We conclude that a division ring D has a unique
isomorphism class of simple left D-modules.

LEMMA 2.12. Let D be a division ring and let R = M, (D). The left R-module
of column n-vectors S = My 1(D) is a simple left R-module.

PROOF. Let N C S be a non-zero submodule. We must show that N = S. We
first choose a non-zero vector ;1 € N. By Theorem 1.10, we can choose additional
vectors g, ..., x, € S such that X = {x1,zs,...,2,} is a basis of S as a right
D-vector space. Here and below, we use that, by Remark 1.12, every basis of S as
a right D-vector space has n elements. Now let A € R be the n X n-matrix whose
jth column is x;. We claim that A is invertible. Indeed, since X C § is a right
D-vector space basis, there exists B € R such that AB = I which, in turn, implies
that A and B are invertible and BA = I. Hence

1
0
B:Cl = BA€1 = €1 =
0
which shows that e; € N. Now, given x € S, we choose C' € R with x as its first
column. Then x = Ce; € N which shows that x € N as desired. O

PROPOSITION 2.13 (Schur’s lemma). Let R be a ring and let S be a simple right
R-module. Then the ring Endg(S) is a division ring.

PrROOF. Let f: S — S be a non-zero R-linear map. We must show that there
exists an R-linear map g: S — S such that both f o g and go f are the identity
map of S. It suffices to show that f is a bijection. For then f~': S — S is the
desired R-linear map. Now, the image f(S) C S is a submodule which is non-zero
since f is non-zero. As S is simple, we conclude that f(S) = S, so f is surjective.
Similarly, ker(f) C S is a submodule which is not all of S since f is not the zero
map. Since S is simple, we conclude that ker(f) is zero, so f is injective. O



