3. Semi-simple rings
We next consider semi-simple modules in more detail.

LEMMA 3.1. Let R be a ring, let M be a left R-module, and let {S;}icr be a
finite family of simple submodules the union of which generates M. Then there
exists a subset J C I such that M = @, ; S;.

PROOF. We consider a subset J C I which is maximal among subsets with the
property that the sum of submodules ZjeJ S; C M is direct. Now, if ¢ € I\ J,
then S; N 3>, ;S; # {0} or else J would not be maximal. Since S; is simple, we
conclude that S; is contained in the submodule >_ . ; S; C M. It follows that this
submodule is all of M. This completes the proof. O

PROPOSITION 3.2. Let R be a ring and let M be a semi-simple left R-module.

(i) Let Q be a left R-module and let p: M — @ be a surjective R-linear map.
Then Q is semi-simple and there exists an R-linear map s: Q — M such
that po s: QQ — Q is the identity map.

(ii) Let N be a left R-module and let i: N — M be an injective R-linear map.
Then N is semi-simple and there exists an R-linear map r: M — N such
that roi: N — N is the identity map.

PROOF. (i) We write M = €D, ; S; as a finite direct sum of simple submodules.
Let J C I be the subset of indices 7 such that p(S;) is non-zero. By Lemma 3.1,
we can find a subset K C J such that @, p(Si) = Q. Let j: @, Si — M
be the canonical inclusion. Then p o j is an isomorphism which shows that @ is
semi-simple. Moreover, the composite map s = jo(poj)~!: @ — M has the desired
property that p o s is the identity map of Q.

(ii) It follows from (i) that there exists a submodule P C M such that the com-
position P — M — M/N of the canonical inclusion and the canonical projection
is an isomorphism. Now, if g: M — M/P is the projection onto the quotient by
P, then goi: N — M/P is an isomorphism. This shows that N is semi-simple and
that the map r = (goi)"' oq: M — N satisfies that r o = idy. O

Let M be a semi-simple left R-module and let A be the set of isomorphism
classes of simple left R-modules. If the simple submodule S C M belongs to the
class A € A, we say that S has type A. We prove that semi-simple left R-modules
admit the following canonical isotypic decomposition.

ProproOSITION 3.3. Let R be a ring.

(i) Let M be a semi-simple left R-module, and let My C M be the submodule
generated by the union of all simple submodules of type A. Then

M:EBMA

AEA
and My is a direct sum of simple submodules of type .
(ii) Let M and N be semi-simple left R-modules and let f: M — N be an
R-linear map. Then f(My) C Ny.

PROOF. (i) Since M is semi-simple, we can write M = @,.; S; as a direct sum

of simple submodules. Let M} = @ieA S; where Iy C I is the subset of ¢ € T

such that S; is of type \. We have M = @, ., M} and M5 C M. We must prove
9
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that M} = M. So let S C M be a simple submodule of type A and let i € I.
The composition f;: S — M — S; of the canonical inclusion and the canonical
projection is an R-linear map. Since S and S; are both simple left R-modules, the
map f; is either zero or an isomorphism. If it is an isomorphism, we have i € I by
definition. This shows that S C M}, and hence, M C M} as desired.

(ii) Let S C M be a simple submodule of type A. Then f(S) C N is either zero
or a simple submodule of type A. Therefore, f(M,) C N, as stated. O

DEFINITION 3.4. (i) The ring R is semi-simple if it semi-simple as a left module
over itself.

(ii) The ring R is simple if it is semi-simple and if it has exactly one type of
simple modules.

THEOREM 3.5. Let R be a semi-simple ring and let R = @, Ra be the
isotypic decomposition of R as a left R-module.

(i) For every \ € A, the left ideal Ry C R is non-zero. In particular, A is a
finite set.

(ii) For every A € A, the left ideal Ry C R is also a right ideal.

(iii) Let a,b € R and write a = ) .y ax and b =), bx with ax,by € Ry.
Then ab =", axbx and axby € Ry.

(iv) For every A € A, Ry is a ring with respect to the restriction of the mul-
tiplication on R and the identity element is the unique element ey € R)
such that )", ex = 1.

(v) For every X\ € A, the ring Ry is simple.

ProoF. (i) Let S be a simple left R-module of type A\. We choose a non-zero
element x € S and consider the R-linear map p: R — S defined by p(a) = a - z.
The image p(S) C S, which is a non-zero submodule of a simple left R-module, is
necessarily all of S, so p is surjective. We conclude from Proposition 3.2 that there
exists an R-linear map s: S — R such that po s = idg. But then s(S) C R is a
simple submodule of type A.

(ii) Let @ € R and let p,: R — R be the map p,(b) = ba defined by right
multiplication by a. It is an R-linear map from the left R-module R to itself. By
Proposition 3.3 (ii), we conclude that p,(Ry) C Ry which is precisely the statement
that Ry C R is a right ideal.

(ili) Since R, C R is a left ideal, we have axb, € R,,, and since Ry C R is a
right ideal, we have axb, € Ry. It follows that axb, € Ry N R, which is equal to
R, and {0}, respectively, as A = g and A # p.

(iv) We have already proved in (iii) that the multiplication on R restricts to a
multiplication on Ry. Now, for all a) € Ry, we have

a)\:a,\-lzaA-(Zeu):ZaA-eH:aA~e)\
HEA pneEA

and the identity a) = ey - a) is proved analogously. It follows that R) is a ring.

(v) Let Sy be a simple left R-module of type . Since Ry C R, the left
multiplication of R on S) defines a left multiplication of Ry on Sy. To prove that
this defines a left Ry-module structure on S, we must show that ey - z = x, for
all z € S). We have just proved that ey -y = y, for all y € Ry. Moreover, by
Proposition 3.3 (i), we can find an injective R-linear map fy: Sy — Ry. Since

Inlex-x) =ex- fa(z) = fa(z),
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we conclude that ey - x = z, for all x € S}, as desired. We further note that S is a
simple left Ry-module. Indeed, it follows from (iii) that the subset N C S) is an R-
submodule if and only if it is an Ry-submodule. Finally, by Proposition 3.3 (i), the
left R-module R} is isomorphic to a direct sum Sy 1+ - -+ of simple submodules,
all of which are isomorphic to the simple left R-module S). Therefore, as a left
Ry-module, R, is isomorphic to the direct sum Sy 1 + - -4 Sy, of submodules, all
of which are isomorphic to the simple left Ry-module S). This shows that R) is
a semi-simple ring, and we conclude from (i) that every simple left Ry-module is
isomorphic to Sy. So Ry is a simple ring. (]

REMARK 3.6. The inclusion map iy: Ry — R is not a ring homomorphism
unless R = R)y. Indeed, the map 7, takes the multiplicative identity element e, €
R to the element ey € R which is not equal to the multiplicative identity element
1 € R unless R = R). However, the projection map

pr: R — Ry

that takes a = ZﬂeA a, with a, € R, to ay is a ring homomorphism. In general,
the product ring of the family of rings {Rxea} is the defined to be the set

IT 2x = {(a)rea | ax € Ry}
AEA
with componentwise addition and multiplication. The multiplicative identity ele-
ment in the product ring is the tuple (e))aeca where ey € Ry is the multiplicative
unit element. We may now restate Theorem 3.5 (ii)—(v) as saying that the map
p: R— H Ry
AEA

defined by p(a) = (pa(a))rea is an isomorphism of rings, and that each of the
component rings R is a simple ring.

We next prove the following structure theorem for simple rings. We recall from
Schur’s lemma that the endomorphism ring of a simple module is a division ring.

THEOREM 3.7. The following statements holds.
(i) Let D be a division ring and let R = My (D) be the ring of n x n-matrices.
Then R is a simple ring with the left R-module S = M, 1(D) of column
n-vectors as its simple module, and the map

p: D — Endg(S)°P
defined by p(a)(x) = za is a ring isomorphism.
(ii) Let R be a simple ring and let S be a simple left R-module. Then S is a

finite dimensional right vector space over the division ring D = Endg(S)°P
opposite of the ring of R-linear endomorphisms of S, and the map

A: R — Endp(S)
defined by Aa)(z) = ax is a ring isomorphism.

PRrROOF. (i) We have proved in Lemma 2.12 that S is a simple R-module. Now,
let e; € M ,,(D) be the row vector whose ith entry is 1 and whose remaining entries
are 0. Then the map f: S@ ---® S — R, where there are n summands S, defined
by f(v1,...,v,) = vie; + -+ + vye, is an isomorphism of left R-modules. Indeed,
in the n X n-matrix v;e;, the ith column is v; and the remaining columns are zero.
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This shows that R is a semi-simple ring. By Theorem 3.5 (i), we conclude that
every simple left R-module is isomorphic to S. Hence, the ring R is simple.

It is readily verified that the map p is a ring homomorphism. Now, the kernel
of p is a two-sided ideal in the division ring D, and hence, is either zero or all of D.
But p(1) = idg is not zero, so the kernel is zero, and hence the map p is injective.
It remains to show that p is surjective. So let f: S — S be an R-linear map. We
must show that there exists a € D such that for all y € S, f(y) = ya. To this end,
we fix a non-zero element x € S and choose a matrix P € R such that Pr = z and
such that PS =D C S. Since f is R-linear, we have

f(2) = f(Pz) = Pf(x) € 2D

which shows that f(z) = za with a € D. Now, given any y € S, we can find a
matrix A € R such that Ax = y. Again, since f is R-linear, we have

fly) = f(Az) = Af(x) = Aza = ya

as desired. This shows that p is surjective, and hence, and isomorphism.

(ii) Since R is a simple ring with simple left R-module S, there exists an
isomorphism of left R-modules f: S™ — R from the direct sum of finite number n
copies of S onto R. We now have ring isomorphisms

R° =, Endg(R) =5 Endg(S™) = M, (Endg(S)) = M, (D)

where the left-hand isomorphism is given by Remark 2.6, the middle isomorphism
is induced by the chosen isomorphism f, and the right-hand isomorphism takes the
endomorphism g to the matrix of endomorphisms (g;;) with the endomorphism g;;
defined to be the composition g;; = p; o g o i; of the inclusion i;: S — S™ of the
jth summand, the endomorphism g: S™ — S™, and the projection p;: S™ — S on
the ith summand. It follows that we have a ring isomorphism

R = My (DP)°P = My ((D°P)*) = My, (D)
given by the composition of the isomorphism above and the isomorphism that takes
the matrix A to its transpose !A. This shows that the simple ring R is isomorphic
to the simple ring M, (D) we considered in (i). Therefore, it suffices to show that
the map A is an isomorphism in this case. But this is precisely the statement of
Corollary 2.5. (|

EXERCISE 3.8. Let D be a division ring, let R = M,,(D), and let S = M,, 1(D).
We view S as a left R-module and as a right D-vector space.

(1) Let € S be a non-zero vector. Show that there exists a matrix P € R
such that PS =D C S. (Hint: Try = = e first.)

(2) Let x,y € S be non-zero vectors. Show that there exists a matrix A € R
such that Az = y.

REMARK 3.9. The center of a ring R is the subring Z(R) C R of all elements
a € R with the property that for all b € R, ab = ba; it is a commutative ring. The
center k = Z(D) of the division ring D clearly is a field, and it is not difficult to
show that also Z(M,, (D)) = k. It is possible for a division ring D to be of infinite
dimension over the center k. However, one can show that if D is of finite dimension
d over k, then d = m? is a square and every maximal subfield E C D has dimension
m over k. For example, the center of the division ring of quarternions H is the field
of real numbers R and the complex numbers C C H is a maximal subfield.
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It is high time that we see an example of a semi-simple ring. In general, if k
is a commutative ring and if G is a group, the group ring k[G] is defined to be the
free k-module with basis G and with multiplication

(D ag9) - (D beg) =D (D anbr)g

geG geG 9€G h,keG
hk:g
We note that G C k[G] as the set of basis elements; the unit element e € G is also
the multiplicative unit element in the ring k[G]. Moreover, the map 7: k — k[G]
defined by n(a) = a - e is ring homomorphism. If M is a left k[G]-module, we also
say that M is a k-linear representation of the group G.

Let k£ be a field and let n7: Z — k be the unique ring homomorphism. We
define the characteristic of k£ to be the unique non-negative integer char(k) such
that ker(n) = char(k)Z. For example, the fields Q, R, and C have characteristic
zero while, for every prime number p, the field Z/pZ has characteristic p.

EXERCISE 3.10. Let k be a field. Show that char(k) is either zero or a prime
number, and that every integer n not divisible by char(k) is invertible in k.

THEOREM 3.11 (Maschke’s theorem). Let k be a field and let G be finite group
whose order is not divisible by the characteristic of k. Then the group ring k[G] is
a semi-simple ring.

ProOOF. We show that every left k[G]-module M of finite dimension m over k
is a semi-simple left k[G]-module. The proof is by induction on m; the basic case
m = 1 follows from Example 2.11, since a left k[G]-module of dimension 1 over k
is simple as a left k-module, and hence, also as a left k[G]-module. So we let M
be a left k[G]-module of dimension m > 1 over k and assume, inductively, that
every left k[G]-module of smaller dimension is semi-simple. We must show that
M is semi-simple. If M is simple, we are done. If M is not simple, there exists a
non-zero proper submodule N C M. We let i: N — M be the inclusion and choose
a k-linear map o: M — N such that o o7 = idy. The map o is not necessarily
k[G]-linear. However, we claim that the map s: M — N defined by

-1
(x) ‘ G| Z go(g™ x)
geG
is k[G]-linear and satisfies s 04 = idy. Indeed, s is k-linear and if h € G, then

s(hx) G Zga “lha) = G Zhh go(g~ hz)
| |9€G | ‘gEG

> hko(k™'x) = hs()
|G| et
which shows that s is k[G]-linear. Moreover, we have

(soi)(z) = |G|Zg Li(x) ‘G|Zga (i(g~ )
g€@G geG
|G|Zgg ly =2
geG

which shows that so¢ = idy. This proves the claim. Now, let P be the kernel of s.
The claim shows that M is equal to the direct sum of the submodule N, P C M.
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But N and P both have dimension less than m over k, and hence, are semi-simple
by the inductive hypothesis. This shows that M is semi-simple as desired. ([

ExAaMPLE 3.12 (Cyclic groups). To illustrate the theory above, we determine
the structure of the group rings C[C,], R[C,], and Q[C,], where C,, is the cyclic
group of order n. Theorem 3.11 shows that the three rings are semi-simple rings, and
their structure are given by Theorems 3.5 and 3.7 once we identify their isomorphism
classes of simple modules; we proceed to do so. We fix choices of a generator g € C,
and of a primitive nth root of unity ¢, € C.

We first consider the complex group ring C[C,,]. For every 0 < k < n, we define
the left C[C,,]-module C(¢¥) to be the sub-C-vector space C(¢¥) C C spanned by
the elements C,’ji with 0 <7 < n and with the module structure defined by

n—1 n—1
(Z aig') -z = Z aiCy'z.
=0 =0

The left C[C,,]-module C(¢¥) is simple. For as a C-vector space, C(¢¥) = C, and
therefore has no non-trivial proper submodules. Suppose that f: C(¢¥) — C(¢) is
a C[Cy]-linear isomorphism. Then we have

Cr)=f(¢H =flg-1)=g-f1) = 1),

where the first and third equalities follows from C[C},]-linearity. Since f(1) # 0,
we conclude that k = [. So the n simple left C[C,,]-modules C(¢¥), 0 < k < n, are
pairwise non-isomorphic. Therefore, Theorem 3.5 (i) implies that

as a left C[Cp]-module. The endomorphism ring Endgc,(C(¢F)) is isomorphic to
the field C for all 0 < k < n.

We next consider the real group ring R[C,]. Again, for 0 < k < n, we define
the left R[C,,]-module R(¢¥) to be the sub-R-vector space R(¢¥) C C spanned by
the elements (¥ with 0 < i < n and with the module structure defined by

n—1 ) n—1 )

(Z aig') -z = Z aiy'z.

i=0 i=0
The left R[C,,]-module R(¢F) is simple. For given two elements z, 2’ € R(¢¥), there
exists w € R[C,] with w -z = 2’. The dimension of R(¢¥) as an R-vector space
is either 1 or 2 according as (¥ € R or ¢¥ ¢ R. Moreover, we find that the left
R[C,,]-modules R(¢¥) and R(¢}) are isomorphic if and only if the complex numbers
¢¥ and ¢!, are conjugate. Again, from Theorem 3.5 (i), we conclude that

[n/2]
R[Ch] = D R
k=0
as a left R[C},]-module. Here [n/2] is the largest integer less than or equal to n/2.
The endomorphism ring EndR[Cn](R(C,’f)) is isomorphic to R, if k = 0 or k = n/2,
and to C, otherwise.
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Finally, we consider the rational group ring Q[C,,]. For all 0 < k < n, we define
the left Q[C,]-module Q(¢¥) to be the sub-Q-vector space Q(¢¥) C C spanned by
the elements (¥ with 0 < ¢ < n and with the module structure defined by

n—1 n—1
O aig) 2= akz
=0 i=0

Again, Q(¢¥) is a simple left Q[C),]-module, since given z, 2’ € Q(¢¥), there exists
an element w € Q[C,,] with w - z = z’. Suppose that

{¢Flo<i<n}={¢"|0o<i<n}cCC.
Then we may define a Q[C,,]-linear isomorphism
£ Q(G) = Q(G)

to be the unique Q-linear map that takes (¢ to ¢!, for all 0 < i < n. Suppose that
the set {¢** | 0 < i < n} has d elements. Then d divides n and

{¢F1o<i<n}={¢l0<i<d}

with ¢4 € C a primitive dth root of unity. Let Q({4) C C be the left Q(¢{s)-module
defined by the sub-Q-vector space Q(¢4) C C spanned by the ¢} with 0 < i < d and
with the module structure

n—1 n—1
> zig') 2= il
=0 =0

Then we define a Q[C),]-linear isomorphism

F+Q(Ca) = Q)
to be the unique Q-linear map that takes ¢’ to ¢¥. Tt is not difficult to show that

the dimension of Q(¢4) as a Q-vector space is equal to the number ¢(d) of the
integers 1 < ¢ < d that are prime to d. Moreover, since

> p(d) =mn

d|n

we conclude from Theorem 3.5 (i) that these represent all isomorphism classes of
simple left Q[C),]-modules. Therefore,

Q[Cy] = P Q(Ca)
d|n

as a left Q[C),]-module. We note that Q(¢4) C C is a subfield, the dth cyclotomic
field over Q. The endomorphism ring Endgjc, 1(Q(Cq))°P is isomorphic to the field
Q(¢q) for every divisor d of n.

REMARK 3.13 (Modular representation theory). If the characteristic of the field
k divides the order of the group G, then the group ring k[G] is not semi-simple, and
it is a very difficult problem to understand the structure of this ring. For example,
if F,, is the field with p elements and &, is the symmetric group on p letters, then
the structure of the ring F,[&,] is only understood for a few primes p.



