

Problems for Recitation 2

The purpose this week is to prove (5) below. This result is known by the French term *recollement*, which means something like reattachment.

Let X be a space, let $U \subset X$ be an open subset, and let $Y \subset X$ be the closed complement. We write $i: Y \rightarrow X$ and $j: U \rightarrow X$ for the canonical inclusions.

(1) Let $j^{-1}: O(X) \rightarrow O(U)$ be the inverse image functor and recall the adjoint pair of functors (j^p, j_p) with $j_p = (j^{-1})^*: U^\wedge \rightarrow X^\wedge$ and with $j^p = (j^{-1})_!: X^\wedge \rightarrow U^\wedge$ the left Kan extension. Show that j^p and j_p both preserve sheaves.

(2) We consider the functor $u: O(U) \rightarrow O(X)$ defined by $u(V \subset U) = V \subset X$, let $u^*: X^\wedge \rightarrow U^\wedge$ be the induced functor, and let $u_!, u_*: U^\wedge \rightarrow X^\wedge$ be the left and right Kan extensions, respectively. Show that u^* and j^p (resp. u_* and j_p) are canonically isomorphic. Conclude that the functor

$$j_! = a_X u_! i_U: U^\sim \rightarrow X^\sim$$

is left adjoint to j^* .

(3) Prove that the functor $u_!: U^\wedge \rightarrow X^\wedge$ from (2) is given by

$$(u_! F)(V) = \begin{cases} F(V) & \text{if } V \subset U \\ \emptyset & \text{if } V \not\subset U. \end{cases}$$

(Here \emptyset is the initial object in the category of sets. If we were considering presheaves in some other category, we would get an initial object in that category instead.)

(4) We let F be a sheaf on X and consider the following diagram of sheaves on X in which the horizontal maps (resp. the vertical maps) are induced from the unit map of the adjoint pair (j^*, j_*) (resp. of the adjoint pair (i^*, i_*)).

$$\begin{array}{ccc} F & \xrightarrow{\quad} & j_* j^* F \\ \downarrow & & \downarrow \\ i_* i^* F & \xrightarrow{\quad} & i_* i^* j_* j^* F \end{array}$$

Show that the diagram is cartesian. (Hint: Calculate the induced diagrams of stalks at $x \in X$, considering the two cases $x \in U$ and $x \in Y$ separately.)

(5) Define $(Y^\sim, U^\sim, i^* j_*)$ to be the category, where the objects are triples (F_1, F_2, f) with F_1 and F_2 sheaves on Y and U , respectively, and with $f: F_1 \rightarrow i^* j_* F_2$ a map of sheaves on Y , and where a morphism from (F_1, F_2, f) to (F'_1, F'_2, f') is a pair (g_1, g_2) of morphisms $g_1: F_1 \rightarrow F'_1$ and $g_2: F_2 \rightarrow F'_2$ such that the diagram

$$\begin{array}{ccc} F_1 & \xrightarrow{f} & i^* j_* F_2 \\ \downarrow g_1 & & \downarrow i^* j_* g_2 \\ F'_1 & \xrightarrow{f'} & i^* j_* F'_2 \end{array}$$

commutes. Conclude from (4) that the functor

$$X^\sim \rightarrow (Y^\sim, U^\sim, i^* j_*)$$

that takes F to $(i^*F, j^*F, i^*\eta: i^*F \rightarrow i^*j_*j^*F)$ is an equivalence of categories.

(6) Show that, under the equivalence in (5), the functors i^* , i_* , $j_!$, j^* , and j_* are given by the following formulas.

$$\begin{aligned} i^*(F_1, F_2, f) &= F_1 \\ i_*(F_1) &= (F_1, *, F_1 \rightarrow *) \\ j_!(F_2) &= (\emptyset, F_2, \emptyset \rightarrow F_2) \\ j^*(F_1, F_2, f) &= F_2 \\ j_*(F_2) &= (i^*j_*F_2, F_2, \text{id}) \end{aligned}$$