

Problems for Recitation 7

The problems this time concern affine morphisms of schemes. A morphism of schemes $f: X \rightarrow S$ is defined to be affine if for every affine open subset $V \subset S$, the inverse image $f^{-1}(V) \subset X$ is an affine open subset. The problems show that the functor that to $f: X \rightarrow S$ assigns $f_*(\mathcal{O}_X)$ is an equivalence of categories from the category of affine S -schemes to the category of quasicoherent \mathcal{O}_S -algebras.

1. Let $f: X \rightarrow S$ be a morphism of schemes and suppose that S admits a covering $\{V_i\}_{i \in I}$ by affine open subsets with the property that for every $i \in I$, the inverse image $f^{-1}(V_i) \subset X$ is affine open. Show that $f: X \rightarrow S$ is an affine morphism.
2. Show that if $f: X \rightarrow S$ is an affine morphism, then the \mathcal{O}_S -algebra $f_*(\mathcal{O}_X)$ is quasicoherent.
3. Let S be a scheme and let \mathcal{A} be a quasicoherent \mathcal{O}_S -algebra. Prove the following statements:

- (i) If $U \subset V \subset S$ are affine open, then the diagram of canonical maps

$$\begin{array}{ccc} \mathrm{Spec}(\Gamma(U, \mathcal{A})) & \longrightarrow & \mathrm{Spec}(\Gamma(V, \mathcal{A})) \\ \downarrow & & \downarrow \\ U & \xrightarrow{\quad} & V \end{array}$$

is cartesian. Here the left-hand vertical map is the composition

$$\mathrm{Spec}(\Gamma(U, \mathcal{A})) \longrightarrow \mathrm{Spec}(\Gamma(U, \mathcal{O}_S)) \xrightarrow{\epsilon} U$$

of the map induced by the unit of the \mathcal{O}_S -algebra \mathcal{A} and the counit of the adjunction $(\Gamma(-, -), \mathrm{Spec})$, and the right-hand vertical map is analogous.

- (ii) There exists, up to canonical isomorphism of schemes over S , a unique morphism $f: X \rightarrow S$ such that $f_*(\mathcal{O}_X)$ is isomorphic to \mathcal{A} .
- (iii) Show that this morphism $f: X \rightarrow S$ is affine.

We write $f: \mathrm{Spec}_S(\mathcal{A}) \rightarrow S$ for the morphism constructed in (ii).

4. Let S be a fixed scheme, and let Aff_S and $\mathrm{Alg}_{\mathcal{O}_S, \mathrm{qc}}$ be the categories of affine S -schemes and quasicoherent \mathcal{O}_S -algebras, respectively. Prove that

$$\mathrm{Aff}_S \underset{\mathrm{Spec}_S}{\mathop{\rightleftarrows}^{f_*}} \mathrm{Alg}_{\mathcal{O}_S, \mathrm{qc}}^{\mathrm{op}}$$

is an adjoint equivalence of categories.