

Problems for Recitation 8

1. Let B be an A -algebra of finite presentation, let $h: A[x_1, \dots, x_n] \rightarrow B$ be a surjective A -algebra homomorphism, and let $I \subset A[x_1, \dots, x_n]$ be the kernel of h . Show that the ideal $I \subset A[x_1, \dots, x_n]$ necessarily is finitely generated.

2. Show that if $f: \text{Spec}(B) \rightarrow \text{Spec}(A)$ is étale, then B admits a presentation

$$B = A[x_1, \dots, x_n]/(f_1, \dots, f_n)$$

such that the image in $M_n(B)$ of the Jacobian $(\partial f_i / \partial x_j)$ is invertible.

3. Let $f: \text{Spec}(B) \rightarrow \text{Spec}(A)$ be an étale morphism between affine schemes and suppose that $A = \text{colim}_i A_i$ be a filtered colimit of rings. Show that there exists a cartesian square

$$\begin{array}{ccc} \text{Spec}(B) & \longrightarrow & \text{Spec}(B_i) \\ \downarrow f & & \downarrow f_i \\ \text{Spec}(A) & \longrightarrow & \text{Spec}(A_i) \end{array}$$

with f_i étale and with the lower horizontal map induced by the canonical ring homomorphism $\text{in}_i: A_i \rightarrow A$.

4. Show that if $f: \text{Spec}(B) \rightarrow \text{Spec}(A)$ is a smooth morphism between affine schemes, then there exists a cartesian square

$$\begin{array}{ccc} \text{Spec}(B) & \longrightarrow & \text{Spec}(B_0) \\ \downarrow f & & \downarrow f_0 \\ \text{Spec}(A) & \longrightarrow & \text{Spec}(A_0) \end{array}$$

with f_0 smooth and with the lower horizontal map induced by the canonical inclusion of a subring $A_0 \subset A$ that is of finite type over \mathbb{Z} .