

Problems for Recitation 1

1. Let \mathbf{C} be a category and let $h: \mathbf{C} \rightarrow \mathbf{C}^\wedge$ be the Yoneda embedding. Show that the map that to a sieve S on X assigns the subfunctor $h(S)$ of $h(X)$ defined by

$$h(S)(Y) = \{f: Y \rightarrow X \mid f \in \text{ob}(S)\} \subset h(X)(Y)$$

is a bijection from the set of sieves on X to the set of subfunctors of $h(X)$. Show that if $g: X' \rightarrow X$ is a morphism in \mathbf{C} and S a sieve on X , then the diagram

$$\begin{array}{ccc} h(g^*(S)) & \longrightarrow & h(S) \\ \downarrow & & \downarrow \\ h(X') & \xrightarrow{h(g)} & h(X) \end{array}$$

is a fiber product in \mathbf{C}^\wedge . Here the vertical maps are the canonical inclusions and the top horizontal map is the natural transformation whose value at Y' is the map that to $f': Y' \rightarrow X'$ to $g \circ f': Y' \rightarrow X$. Restate the definitions of a topology J on \mathbf{C} and of a sheaf on \mathbf{C} with respect to the topology J in terms of subfunctors of representable presheaves.

2. Let \mathbf{C} be a category which admits fiber products. If K is a pretopology on \mathbf{C} , then we define the topology J_K on \mathbf{C} generated by K as follows. For every object X of \mathbf{C} , the set $J_K(X)$ consists of all sieves S on X with the property that there exists a family $(f_i: X_i \rightarrow X)_{i \in I}$ in $K(X)$ all of whose members are objects of S . Show that J_K is indeed a topology. Show that a presheaf F on \mathbf{C} is a sheaf with respect to K if and only if it is a sheaf with respect to J_K .