

Problems for Recitation 2

1. Let \mathbf{C} be a category and let $(F_i)_{i \in I}$ be a family of presheaves on \mathbf{C} . For every object X of \mathbf{C} , define $J(X)$ to be the set of sieves S on X with the property that for every $i \in I$ and every morphism $f: Y \rightarrow X$ in \mathbf{C} , the canonical map

$$F_i(Y) \longrightarrow \lim_{f^*(S)^{\text{op}}}(F_i)_{Y, f^*(S)}$$

is a bijection. Show that J is a topology on \mathbf{C} .

(If the family in question is the family $(h(X))_{X \in \text{ob}(\mathbf{C})}$ of all representable presheaves on \mathbf{C} , then the topology J is called the *canonical topology*.)

2. Let (\mathbf{C}, J) and (\mathbf{C}', J') be two sites and let (v, u, ϵ, η) be an adjunction from \mathbf{C}' to \mathbf{C} . Show that u is continuous if and only if v is cocontinuous. In this case, show that the functors u^s and v^* , or equivalently, the functors u_s and v_* are canonically naturally isomorphic. Conclude that the functor u^s preserves finite limits.