

Problems for Recitation 3

1. A continuous map of spaces $f: X \rightarrow Y$ gives rise to a functor $u: O(Y) \rightarrow O(X)$ defined by $u(U) = f^{-1}(U)$. Show that u is continuous, i.e., that $(u^{op})^*$ preserves sheaves (see Example 3.5 in the lecture notes). In this setting the functor u_s is denoted by f_* and called the direct image while u^s is denoted by f^* and called the inverse image functor. Describe the effects of f_* and f^* on sheaves.

2. Let X be a topological space and let $x \in X$ be a point. Given a set S , we define the skyscraper sheaf of S at x by

$$\text{skysc}_x(S)(U) = \begin{cases} S & \text{if } x \in U \\ \{\emptyset\} & \text{if } x \notin U, \end{cases}$$

with either identity maps or the unique map to $\{\emptyset\}$ as restriction maps. Show that $\text{skysc}_x(S)$ is a sheaf and that the construction gives a functor

$$\text{skysc}_x: \text{Set} \rightarrow X^\sim$$

to the category $X^\sim = O(X)^\sim$ of sheaves on X .

Let F be a sheaf on X . We define the stalk of F at $x \in X$ to be the colimit

$$\text{stalk}_x(F) = \text{colim}_{x \in U} F(U)$$

indexed the category of open sets containing x . Show that this construction defines a functor

$$\text{stalk}_x: X^\sim \rightarrow \text{Set}.$$

Give an alternative description of skysc_x and stalk_x in terms of continuous maps of spaces and show that they are adjoint functors.

3. A morphism $f: B \rightarrow C$ in a category \mathbf{C} is a *monomorphism* if for all pairs of morphisms $g, h: A \rightarrow B$ the equality $f \circ g = f \circ h$ implies the equality $g = h$. Similarly, f is an *epimorphism* if for all pairs of morphisms $g, h: C \rightarrow D$, the equality $g \circ f = h \circ f$ implies the equality $g = h$.

(a) Show that in the category Set the monomorphisms are exactly the injective functions and the epimorphisms are exactly the surjective functions. Show that in the category Ring of rings and ring homomorphisms the monomorphisms are injective but that not all epimorphisms are surjective.

(b) Show that $f: B \rightarrow C$ is a monomorphism if and only if the diagram

$$\begin{array}{ccc} B & \xrightarrow{id} & B \\ \text{id} \downarrow & & \downarrow f \\ B & \xrightarrow{f} & C \end{array}$$

is cartesian. Use this to show that right adjoints preserve monomorphisms. State and prove the corresponding result for epimorphisms and left adjoints.

(c) Let (\mathbf{C}, J) be a site. Show that a map $f: F \rightarrow G$ of presheaves is a monomorphism or epimorphism if and only if for every object X in \mathbf{C} , the map $f_X: F(X) \rightarrow G(X)$ is a monomorphism or epimorphism, respectively. Show that a map $f: F \rightarrow$

G of sheaves is a monomorphism if and only if it is a monomorphism as a map of presheaves.

Epimorphisms of sheaves have a more complicated description:

Proposition. *Let $f: F \rightarrow G$ be a map of sheaves on (\mathcal{C}, J) . Then f is an epimorphism if and only if for each object X in \mathcal{C} and each $x \in G(X)$, there is a covering sieve $S \in J(X)$ such that for all $g: Y \rightarrow X \in \text{ob}(S)$, the element $F(g)(x)$ is in the image of $f_Y: F(Y) \rightarrow G(Y)$.*

(d) Show that a map of sheaves is an isomorphism if and only if it is both a monomorphism and an epimorphism.

4. Let \mathbb{C} be the set of complex numbers with the usual topology. Let $\mathcal{O}_{\mathbb{C}}^{\text{an}}$ be the sheaf of holomorphic functions on \mathbb{C} defined by

$$\mathcal{O}_{\mathbb{C}}^{\text{an}}(U) = \{f: U \rightarrow \mathbb{C} \mid f \text{ is holomorphic on } U\}.$$

Define $\mathcal{O}_{\mathbb{C}}^{\text{an}*}$ to be the subsheaf of $\mathcal{O}_{\mathbb{C}}^{\text{an}}$ of nowhere vanishing holomorphic functions. The exponential map is the map of sheaves

$$\exp: \mathcal{O}_{\mathbb{C}}^{\text{an}} \rightarrow \mathcal{O}_{\mathbb{C}}^{\text{an}*}$$

given on sections by $\exp(f)(z) = e^{f(z)}$. Show that \exp is an epimorphism of sheaves but that it is not surjective on all open sets.