

Problems for Recitation 4

1. Let U be a universe and let \mathbf{C} be a locally U -small and U -cocomplete abelian category in which U -small filtered colimits and finite limits commute. Assume, in addition, that \mathbf{C} has an object G such that the functor

$$\mathbf{C} \xrightarrow{C(G, -)} U\text{-}\mathbf{Set}$$

is faithful. Prove the following statements.

(i) If $j: A'' \rightarrow A'$ is a monomorphism in \mathbf{C} and if the induced map

$$\mathbf{C}(G, A'') \xrightarrow{C(G, j)} \mathbf{C}(G, A')$$

is a bijection, then j is an isomorphism.

(ii) If $i: A' \rightarrow A$ and $i': A'' \rightarrow A$ are two monomorphisms in \mathbf{C} and if the images of the induced maps

$$\mathbf{C}(G, A') \xrightarrow{C(G, i')} \mathbf{C}(G, A) \quad \text{and} \quad \mathbf{C}(G, A'') \xrightarrow{C(G, i)} \mathbf{C}(G, A)$$

are equal, then there exists an isomorphism $j: A'' \rightarrow A'$ such that $i' = i \circ j$.

(iii) Conclude that for every object A in \mathbf{C} , the set of subobjects of A is bijective to a U -small set.

2. Let \mathbf{C} be a category, and let $h_{\mathbf{C}}: \mathbf{C} \rightarrow \mathbf{C}^{\wedge}$ be the Yoneda embedding. Let X be an object of \mathbf{C}^{\wedge} , let $h_{\mathbf{C}}/X$ be the slice category, and let $j_X: h_{\mathbf{C}}/X \rightarrow \mathbf{C}$ be the forgetful functor.

(i) Let J be a topology on \mathbf{C} . Show that there is a topology J/X on $h_{\mathbf{C}}/X$ defined by declaring a sieve $S \subset h_{\mathbf{C}}/X}(c, u)$ to be a covering sieve if and only if $(j_X^{\text{op}})_!(S) \subset h(c)$ is a covering sieve on c .
(ii) Show that $j_X: h_{\mathbf{C}}/X \rightarrow \mathbf{C}$ is both continuous and cocontinuous.
(iii) Show that the functor $j_{X!}: (h_{\mathbf{C}}/X, J/X)^{\sim} \rightarrow (\mathbf{C}, J)^{\sim}$ factors as

$$(h_{\mathbf{C}}/X, J/X)^{\sim} \xrightarrow{(ex)^{\sim}} (\mathbf{C}, J)^{\sim} / a(X) \longrightarrow (\mathbf{C}, J)^{\sim},$$

where the right-hand functor is the forgetful functor, and that the left-hand functor is an equivalence of categories. Here $a: \mathbf{C}^{\wedge} \rightarrow \mathbf{C}^{\sim}$ is the sheafification functor.

(iv) Conclude that if E is a topos and X an object of E , then E/X is a topos and the forgetful functor $E/X \rightarrow E$ a morphism of topoi.