

Problems for Recitation 5

1. Let U be a universe, and let $U\text{-Sch}$ be the category of U -schemes. Show that a $U\text{-Set}$ valued presheaf F on $U\text{-Sch}$ is a sheaf for the fpqc-topology if and only if it satisfies the following (i)–(ii):

- (i) F is a sheaf for the Zariski topology.
- (ii) For every faithfully flat morphism $f: W \rightarrow V$ between affine U -schemes,

$$F(V) \xrightarrow{F(f)} F(W) \xrightarrow[\text{pr}_2]{\text{pr}_1} F(W \times_V W)$$

is an equalizer diagram in $U\text{-Set}$.

2. Let U be a universe, let $u: \mathcal{C} \rightarrow \mathcal{C}'$ be a functor from a U -small category \mathcal{C} to a locally U -small category \mathcal{C}' , and let J' be a topology on \mathcal{C}' .

- (i) Show that there is a finest topology J among the topologies on \mathcal{C} for which the functor $u: (\mathcal{C}, J) \rightarrow (\mathcal{C}', J')$ is continuous.
- (ii) Show that if \mathcal{C} and \mathcal{C}' admit finite limits and u preserves finite limits, then the sieve on X generated by the family $(f_i: X_i \rightarrow X)_{i \in I}$ is in $J(X)$ if and only if the sieve generated by the family $(u(f_i): u(X_i) \rightarrow u(X))_{i \in I}$ is in $J'(u(X))$.

The topology J is called the induced topology on \mathcal{C} relative to the topology J' on \mathcal{C}' and the functor $u: \mathcal{C} \rightarrow \mathcal{C}'$.

3. Let again U be a universe and let $U\text{-Sch}$ be the category of U -schemes. We define the *multiplicative group* to be the abelian group object \mathbb{G}_m in the category of $U\text{-Set}$ valued presheaves on $U\text{-Sch}$ that to a U -scheme X assigns the abelian group $\mathbb{G}_m(X) = \Gamma(X, \mathcal{O}_X)^*$. Find a representation of \mathbb{G}_m by an abelian group object in $U\text{-Sch}$ and conclude that \mathbb{G}_m is a sheaf for the fpqc-topology.