Report problems¹

Problem 1. Due: Tuesday, May 1, 2018, in Science Building 1, Room 105.

Let X be the prime spectrum of a ring and let $x \in X$.

- (i) Show that the closure $\{x\}^-$ of the one-point subset $\{x\} \subset X$ is an irreducible closed subset in the sense that it cannot be written as the union of two proper closed subsets.
- (ii) Show that x is a generic point of $\{x\}^-$ in the sense that the only closed subset of $\{x\}^-$ which contains x is the whole set.
- (iii) Show that every irreducible closed subset of X is of the form $\{x\}^-$ and that x is its unique generic point. Conclude that the assignment $x \mapsto \{x\}^-$ defines a one-to-one correspondance between the points of X and the irreducible closed subsets of X.

Problem 2. Due: Tuesday, May 8, 2018, in Science Building 1, Room 105.

Let C be a category. We consider diagrams $\mathcal{X}: I \to \mathsf{C}$ indexed by various index categories I and the limits of such diagrams, if they exists. If I is discrete in the sense that every morphism in I is an identity morphism, then a diagram $\mathcal{X}: I \to \mathsf{C}$ determines and is determined by the family $(\mathcal{X}(i))_{i \in ob(I)}$ of objects in C . In this situation, a limit of the diagram $\mathcal{X}: I \to \mathsf{C}$ is said to be a *product* of the family $(\mathcal{X}(i))_{i \in ob(I)}$ and is denoted by

$$\prod_{i\in \mathrm{ob}(I)}\mathcal{X}(i).$$

If I is the category with two objects 0 and 1 and with two parallel morphisms $f, g: 0 \to 1$ (in addition to the identity morphisms of 0 and 1), then a diagram $\mathcal{X}: I \to \mathsf{C}$ determines and is determined by the two parallel morphisms

$$\mathcal{X}(0) \xrightarrow[\mathcal{X}(g)]{\mathcal{X}(g)} \mathcal{X}(1).$$

In this situation, a limit of the diagram $\mathcal{X} \colon I \to \mathsf{C}$ is said to be an *equalizer* of the parallel morphisms $\mathcal{X}(f)$ and $\mathcal{X}(g)$.

Now, we let $\mathcal{X}: I \to \mathsf{C}$ be any diagram in C and assume that the products

$$\prod_{i \in \mathrm{ob}(I)} \mathcal{X}(i) \qquad \text{and} \qquad \prod_{f: i \to j \in \mathrm{mor}(I)} \mathcal{X}(j)$$

indexed by the set ob(I) of objects in I and the set mor(I) of morphisms in I, respectively, both exist. We consider the unique morphisms

$$\prod_{i \in ob(I)} \mathcal{X}(i) \xrightarrow[b]{a} \prod_{f: i \to j \in mor(I)} \mathcal{X}(j)$$

such that for every morphism $f: i \to j$ in mor(I),

$$p_{f:i \to j} \circ a = \mathcal{X}(f) \circ p_i$$
 and $p_{f:i \to j} \circ b = p_j$.

 $^{^1\,{\}rm Course}$ homepage: www.math.nagoya-u.ac.jp/~larsh/teaching/S2018_A

Prove the following statements:

(i) If $(p_i: X \to \mathcal{X}(i))_{i \in ob(I)}$ is a limit of $\mathcal{X}: I \to \mathsf{C}$, then

$$X \xrightarrow{(p_i)} \prod_{i \in \mathrm{ob}(I)} \mathcal{X}(i)$$

is an equalizer of a and b.

(ii) Conversely, if $(p_i): X \to \prod_{i \in ob(I)} \mathcal{X}(i)$ is an equalizer of a and b, then $(p_i: X \to \mathcal{X}(i))_{i \in ob(I)}$

is a limit of $\mathcal{X}: I \to \mathsf{C}$.

Problem 3. Due: Tuesday, May 22, 2018, in Science Building 1, Room 105.

We have defined an *adjunction* from a category C to a category D to be a triple of a functor $F: C \to D$, a functor $G: D \to C$, and for every pair (c, d) of an object in C and an object in D, a bijection

$$\operatorname{Hom}_{\mathsf{D}}(F(c),d) \xrightarrow{\alpha_{(c,d)}} \operatorname{Hom}_{\mathsf{C}}(c,G(d)).$$

which is natural in c and d. That the bijection be natural means that if $f: c_0 \to c_1$ is a morphism in C and d is an object in D, then the diagram

$$\operatorname{Hom}_{\mathsf{D}}(F(c_{1}),d) \xrightarrow{\alpha_{(c_{1},d)}} \operatorname{Hom}_{\mathsf{C}}(c,G(d))$$

$$\downarrow^{\operatorname{Hom}_{\mathsf{D}}(F(f),d)} \qquad \qquad \downarrow^{\operatorname{Hom}_{\mathsf{C}}(f,G(d))}$$

$$\operatorname{Hom}_{\mathsf{D}}(F(c_{0}),d) \xrightarrow{\alpha_{(c_{0},d)}} \operatorname{Hom}_{\mathsf{C}}(c,G(d))$$

commutes, and, similarly, if c is an object in C and $g: d_0 \to d_1$ is a morphism in D, then the diagram

commutes. In particular, for every object c in C, we have the morphism

$$\eta_c = a_{(c,F(c))}(\mathrm{id}_{F(c)}) \colon c \to G(F(c)),$$

and the family of morphisms $(\eta_c)_{c \in ob(\mathsf{C})}$ constitute a natural transformation

$$\operatorname{id}_{\mathsf{C}} \xrightarrow{\eta} G \circ F$$

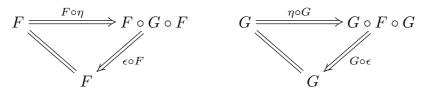
of functors from C to C. Similarly, for every object d of D, we have the morphism $\epsilon_d = a_{(G(d),d)}^{-1}(\mathrm{id}_{G(d)}) \colon F(G(d)) \to d,$

and the family of morphisms $(\eta_d)_{d \in ob(D)}$ constitute a natural transformation

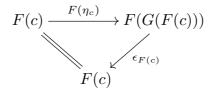
$$F \circ G \xrightarrow{\epsilon} \operatorname{id}_{\mathsf{D}}$$

of functors from D to D. Prove the following statements:

(i) The diagrams of natural transformations



commute. That the left-hand diagram commutes means that for every object c in C, the following diagram of morphisms in C commutes.



The natural transformations $\epsilon \colon F \circ G \Rightarrow \mathrm{id}_{\mathsf{D}}$ and $\eta \colon \mathrm{id}_{\mathsf{C}} \Rightarrow G \circ F$ are called the *counit* and the *unit* of the adjunction, respectively.

(ii) Let $\epsilon: F \circ G \Rightarrow \operatorname{id}_{\mathsf{D}}$ and $\eta: \operatorname{id}_{\mathsf{C}} \Rightarrow G \circ F$ be natural transformations such that the triangular diagrams in (i) commute. Given objects c in C and d in D , we define

$$\operatorname{Hom}_{\mathsf{D}}(F(c),d) \xrightarrow{\alpha_{(c,d)}} \operatorname{Hom}_{\mathsf{C}}(c,G(d))$$

to be the composite map

$$\operatorname{Hom}_{\mathsf{D}}(F(c),d) \xrightarrow{G} \operatorname{Hom}_{\mathsf{C}}(G(F(c)),d) \xrightarrow{\operatorname{Hom}_{\mathsf{C}}(\eta_c,d)} \operatorname{Hom}_{\mathsf{C}}(c,G(d)).$$

Show that $\alpha_{(c,d)}$ is a bijection (what is the inverse?) and that it is natural in c and d. Conclude that (F, G, α) is an adjunction.

The problem shows that we may define an adjunction from C to D, equivalently, to be a quadruple (F, G, ϵ, η) of functors $F: C \to D$ and $G: D \to C$ and natural transformations $\epsilon: F \circ G \Rightarrow id_{D}$ and $\eta: id_{C} \Rightarrow G \circ F$ that make the triangular diagrams in (i) commute.

Problem 4. Due: Tuesday, June 12, 2018, in Science Building 1, Room 105.

The purpose this problem is to prove (v) below. This result is know by the French term *recollement*, which means something like reattachment. We let X be a space, let $U \subset X$ be an open subset, and let $Y \subset X$ be the closed complement. We write $i: Y \to X$ and $j: U \to X$ for the canonical inclusions.

- (i) Let $j^{-1}: O(X) \to O(U)$ be the inverse image functor and recall the adjoint pair of functors (j^p, j_p) with $j_p = (j^{-1})^* : U^{\wedge} \to X^{\wedge}$ and with $j^p = (j^{-1})_! : X^{\wedge} \to U^{\wedge}$ the left Kan extension. Show that the functors j^p and j_p both preserve sheaves.
- (ii) We consider the functor $u: O(U) \to O(X)$ that to $V \subset U$ assigns $V \subset X$, let $u^*: X^{\wedge} \to U^{\wedge}$ be the induced functor, and let $u_!, u_*: U^{\wedge} \to X^{\wedge}$ be the left and right Kan extensions, respectively. Show that u^* and j^p (resp. u_* and j_p) are canonically naturally isomorphic, and conclude that the functor

$$j_! = a_X \, u_! \, i_U \colon U^\sim \to X^\sim$$

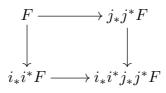
is left adjoint to j^* .

(iii) Prove that the functor $u_!: U^{\wedge} \to X^{\wedge}$ from (2) is given by

$$(u_!F)(V) = \begin{cases} F(V) & \text{if } V \subset U \\ \emptyset & \text{if } V \not\subset U. \end{cases}$$

(Here \emptyset is the initial object in the category of sets. If we were considering presheaves in some other category, we would get an initial object in that category instead.)

(iv) We let F be a sheaf on X and consider the following diagram of sheaves on X in which the horizontal maps (resp. the vertical maps) are induced from the unit map of the adjoint pair (j^*, j_*) (resp. of the adjoint pair (i^*, i_*)).



Show that the diagram is a pullback.² [*Hint*: Calculate the induced diagrams of stalks at $x \in X$, considering the cases $x \in U$ and $x \in Y$ separately.] (v) Define $(Y^{\sim}, U^{\sim}, i^*j_*)$ to be the category, where the objects are triples

 (F_1, F_2, f) with F_1 and F_2 sheaves on Y and U, respectively, and with $f: F_1 \to i^* j_* F_2$ a map of sheaves on Y, and where a morphism from (F_1, F_2, f) to (F'_1, F'_2, f') is a pair (g_1, g_2) of a morphisms $g_1: F_1 \to F'_1$ and $g_2: F_2 \to F'_2$ such that the diagram

$$\begin{array}{c} F_1 & \stackrel{f}{\longrightarrow} i^* j_* F_2 \\ \downarrow^{g_1} & \downarrow^{i^* j_* g_2} \\ F'_1 & \stackrel{f'}{\longrightarrow} i^* j_* F'_2 \end{array}$$

commutes. Conclude from (iv) that the functor

$$X^{\sim} \to (Y^{\sim}, U^{\sim}, i^* j_*)$$

that takes F to $(i^*F, j^*F, i^*\eta: i^*F \to i^*j_*j^*F)$ is an equivalence of categories.

(vi) Show that, under the equivalence in (v), the functors i^* , i_* , $j_!$, j^* , and j_* are given by the following formulas.

$$i^{*}(F_{1}, F_{2}, f) = F_{1}$$

$$i_{*}(F_{1}) = (F_{1}, *, F_{1} \to *)$$

$$j_{!}(F_{2}) = (\emptyset, F_{2}, \emptyset \to F_{2})$$

$$j^{*}(F_{1}, F_{2}, f) = F_{2}$$

$$j_{*}(F_{2}) = (i^{*}j_{*}F_{2}, F_{2}, id)$$

² You may use the following theorem without proof: A morphism $f: F \to G$ in X^{\sim} is an isomorphisms if and only if for every $x \in X$, the induced map of stalks $f_x: F_x \to G_x$ is a bijection.

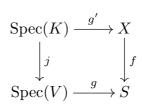
Problem 5. Due: Tuesday, July 3, 2018, in Science Building 1, Room 105.

A morphism of schemes $f: X \to Y$ is quasi-compact if for every affine open subset $V \subset Y$, the inverse image $f^{-1}(V) \subset X$ is quasi-compact. If X is a topological space, if $x \in X$, and if x' is an element of the closure of $\{x\} \subset X$, then we say that $x' \in X$ is a specialization of x.

- (i) Show that if $f: X \to Y$ is a quasi-compact morphism of schemes, then the following are equivalent.
 - (a) The morphism f is closed. (This means that the underlying map of topological spaces is a closed map.)
 - (b) For every $x \in X$ and for every specialization y' of $y = f(x) \in Y$, there exists a specialization x' of x such that f(x') = y'.

Let K be a field. A valuation ring in K is a subring $V \subset K$ that is not a field and such that for all $a \in K^*$, either $a \in V$ or $a^{-1} \in V$ or both. The valuation rings in K are maximal among the local rings $A \subset K$ that are not fields with respect to domination. (If $A, B \subset K$ are two local rings, then B dominates A if $A \subset B$ and $\mathfrak{m}_A = A \cap \mathfrak{m}_B$.) The prime spectrum $\operatorname{Spec}(V)$ of a valuation ring V has a unique closed point s and a unique generic point η and s is a specialization of η . (The elements of $\operatorname{Spec}(V)$ are in one-to-one correspondence with the convex subgroups of the value group K^*/V^* , which is totally ordered under the inclusion relation $aV^* \subset bV^*$.) We write j: $\operatorname{Spec}(K) \to \operatorname{Spec}(V)$ for the morphism of schemes induced by the inclusion of V in K.

(ii) Let $f: X \to S$ be a morphism of schemes, let $x \in X$, let $y = f(x) \in Y$, and let $y' \neq y$ be a specialization of y. Show that there exists a commutative diagram



with K a field and V a valuation ring in K such that g(s) = y' and $g'(\eta) = x$.