2. Simple modules

We first introduce the natural notion of maps between modules.

DEFINITION 2.1. Let R be a ring and let M and N be right R-modules. The
map f: N — M is called R-linear if for all ,y € N and a € R,

f@+y)=f(z)+ f(y)
f(@-a)=f(z)-a.
The set of R-linear maps f: N — M is denoted by Hompg (N, M).

REMARK 2.2. The set Homp(N, M) of R-linear maps from N to M is an
abelian group with addition defined by (f + g)(x) = f(x) + g(x). If M and N are
equal, we also write Endr(M) = Hompg (M, M). It is a ring in which the product
of f and g is the composition f o g defined by (f o g)(x) = f(g()).

EXAMPLE 2.3. Let R be a ring and let M and N be free right R-modules with
finite bases (z1,...,%m) and (yq,...,y,). If f: N - M is an R-linear map, then
we let A be the m x n-matrix, whose entries a;; € R are defined by

f(yj) = T1a1; + L2025 + - + Ty Q-
In this situation, we find, for a general element y = y,$1 + -+ + y,, 8, of N, that

fy)=fly)s1+--+ f(y,)sn
= (x1011 +  + Tmam1)s1 + -+ (1010 + -+ + TrnGmn) Sn

= wl(allsl + -+ alnsn) + -+ :I;m(amlsl —+ -+ amn3n>-

Hence, if y = y,81 + -+ - + Y, Sn, then f(y) = x1r1 + ... @1y, where

T1 aii a12 Q1n S1
T2 a21 a22 a2n S2
T'm am1 am?2 Amn Sn

We say that the matrix A represents the R-linear maps f: N — M with respect to
the bases (yq,...,y,) of N and (x1,...,®,,) of M. We note that it is important
here to consider right R-modules and not left R-modules. With left R-modules, we
would obtain “row vectors” instead of “column vectors.”

PROPOSITION 2.4. Suppose that M, N, and P are free right R-modules with
finite bases (x1,...,Tm), (Yi,---,Yy,), and (21,...,2p), respectively. Let A be the
m X n-matrix that represents the R-linear map f: N — M with respect to the
bases (Yy,...,Y,) of N and (x1,...,2&m) of M, and let B be the n X p-matriz that
represents the R-linear map g: P — N with respect to the bases (z1,...,2p,) of P
and (Yq,...,Y,) of N. Then the m x p-matriz C' that represents the R-linear map
fog: P — M with respect to the bases (z1,...,2p) of P and (x1,...,Ty) of M is

C =AB.

PrROOF. We let z = z1t1 + --- + 2z,t, be a general element of P, and write
9(z) =yis51+ -+ 9Y,5n, and f(g(z)) = z17m1 + -+ + 7. By the definition of
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the matrices A and B, we have

1 a1 ai2 - Qin S1

T2 a21 Q22 - Q2n S2

T'm Am1 Am2 e Amn Sn

51 bir bz - by t

S92 ba1  baz - by to

Sn bnl bn2 T bnp tp

and hence

r1 a1 a2 . Gip bir bz - by 1
T2 a21 Q22 -+ A2n bor  bap - b2p to
m m1 QAm2 - Qmn bnl bn2 e bnp tp

By the definition of the matrix C' and by the associativity of matrix product, we
conclude that C' = AB as stated. O

COROLLARY 2.5. Let R be a ring and let M be a free right R-module with a
finite basis (x1,...,%m,), and let

a: My, (R) — Endg(M)

be the map that to an m x m-matriz A assigns the R-linear map f: M — M
that is represented by A with respect to the basis (1, ..., &) for both domain and
codomain. The map « is a ring isomorphism.

ProoFr. Every R-linear map f: M — M is represented with respect to the
basis (x1,...,%,;,) of M by the unique m X m-matrix defined in Example 2.3.
Hence, the map « is a bijection. Moreover, the R-linear map represented by the
identity matrix I, is the identity map idys; the R-linear map represented by a sum
A + B of two matrices A and B is the sum f + g of the R-linear maps f and ¢
represented by the matrices A and B, respectively; and, by Proposition 2.4, the
R-linear map represented by the matrix product A - B is the composition f o g of
the R-linear maps f and g. This shows that « is a ring homomorphism, and hence,
a ring isomorphism. 0

REMARK 2.6. Let R = (R,+,-) be a ring. The opposite ring R°? = (R, +, )
has the same set R and addition 4+ but the “opposite” product a xb="b-a. A left
R-module M = (M, +,-) determines the right R°P-module M°P = (M, +,*) with
xr*xa=a-z. Now, amap f: M — M is R-linear if and only if f: M°P — M°P is
ReP-linear, and therefore, the rings Endz (M) and End gor (M°P) are equal. Hence,
if M is a free left R-module with a finite basis (1, ..., x,,), then the map

a: M, (R°®?) — Endg(M)
from Corollary 2.5 is a ring isomorphism.

EXERCISE 2.7. Let R be a ring. Show that the map

(=)' My (R)°P — Mo (R)

that takes a matrix A = (a;;) to its transpose A* = (aj;) is a ring isomorphism.



A division ring R is the simplest kind of ring in the sense that every right (or
left) R-module is a free module. We will next consider a slightly more complicated
class of rings that are called simple rings.

DEFINITION 2.8. Let R be a ring and let M and M’ be left R-modules.
(i) The direct sum of M and M’ is the left R-module

MaeM ={(z,z) |z Mz’ € M'}
with sum and scalar multiplication defined by
(@, ) + (y.y) = (@ +y, 2" +y)
a-(x,z') = (azx,ax’).

(ii) A subset N C M is a submodule if for all z,y € N anda € R,z +y € N
and ax € N.
(iii) The sum of two submodules N, N’ C M is the submodule

N+ N ={z+a'|zeN,z' e N'} C M.
(iv) The sum of two submodules N, N’ C M is direct if the map
N@&N — N+ N’

that to (x,x’) assigns & + @’ is an isomorphism, or equivalently, if the
intersection N N N’ is the zero submodule {0}.

ExXAMPLE 2.9. (1) Let R be a ring. A submodule I C R of R considered as a
left R-module is called a left ideal of R.
(2) Let m,n € Z be integers. Then mZ,nZ C Z are ideals and

mZNnZ = [m,n|Z C mZ+ nZ = (m,n)Z

where (m,n) and [m, n| are the greatest common divisor and least common multiple
of m and n, respectively. The sum mZ + nZ is direct if and only if one or both of
m and n are zero.

(3) Let R be a ring and let Ma(R) be the ring of 2 x 2-matrices. The subsets

Pyi(R) = {(“ 8) la,c€ R} C M (R)

C

Pya(R) = {(g Z) 1bd e R} C Ma(R)

are left ideals, and the sum Ps 1 (R)+ P2 2(R) is direct and equals Ma(R). Similarly,

the subsets
Qu1(R) = {(0 g) labe R}  My(R)

0 0
Q22(R) = {(C d) |e,d € R} C My (R)
are right ideals, and the sum Q2 1(R) + Q22(R) is direct and equal to Ma(R).

Q

DEFINITION 2.10. Let R be a ring.

(1) A left R-module S is simple if it is non-zero and if the only submodules
of S are {0} and S.



(2) A left R-module M is semi-simple if it is a direct sum
M=5S+---+5,
of finitely many simple submodules.

EXAMPLE 2.11. Let D be a division ring. We claim that as a left module over
itself, D is simple. Indeed, let N C D be a non-zero submodule and let a € N be
a non-zero element. If b € D, then b = ba~! - a € N, and hence, N = D which
proves the claim. Let S be any simple left D-module and let & € S be a non-zero
element. We claim that the D-linear map f: D — S defined by f(a) =a-x is an
isomorphism. Indeed, the image f(D) C S is a submodule and it is not zero since
x € f(D). Since S is simple, we necessarily have f(D) = S, so f is surjective.
Similarly, the kernel ker(f) = {a € D | f(a) = 0} C D is a submodule, and it is
not all of D since f(1) =« # 0. Since D is simple, we have ker(f) = {0}, so f is
injective. This proves the claim. We conclude that a division ring D has a unique
isomorphism class of simple left D-modules.

LEMMA 2.12. Let D be a division ring and let R = M, (D). The left R-module
of column n-vectors S = M, 1(D) is a simple left R-module.

PrROOF. Let N C S be a non-zero submodule. We must show that N = 5. We
first choose a non-zero vector 1 € N. By Theorem 1.10, we can choose additional
vectors @a,...,x, € S such that the family (xi,@2,...,x,) is a basis of S as a
right D-vector space. Here and below, we use that, by Remark 1.12, every basis of
S as a right D-vector space has n elements. Now let A € R be the n X n-matrix
whose jth column is ;. We claim that A is invertible. Indeed, since (x1,...,x,)
is a right D-vector space basis, there exists B € R such that AB = I which, by
Gauss elimination, implies that A and B are invertible and that BA = I. Hence

1
0
Bwl = BA61 = €] =
0
which shows that e; € N. Now, given & € S, we choose C' € R with x as its first
column. Then & = Ce; € N which shows that x € N as desired. O

PROPOSITION 2.13 (Schur’s lemma). Let R be a ring and let S be a simple right
R-module. Then the ring Endg(S) is a division ring.

PrOOF. Let f: S — S be a non-zero R-linear map. We must show that there
exists an R-linear map ¢g: S — S such that both f o g and g o f are the identity
map of S. It suffices to show that f is a bijection. For the inverse of an R-linear
bijection is automatically R-linear. Now, the image f(S) C S is a submodule,
which is non-zero, since f is non-zero. As S is simple, we conclude that f(S) =5,
so f is surjective. Similarly, ker(f) C S is a submodule, which is not all of S, since
f is not the zero map. Since S is simple, we conclude that ker(f) is zero, so f is
injective. U

EXERCISE 2.14. Let D be a division ring, and let R = M,, (D) be the matrix
ring. The set S = M, 1(D) of column vectors is both a left R-module and a right
D-module, and if A€ R,z € S, and a € D, then (A-x)-a= A-(x-a). Show that
the map n: D°? — Endg(S) defined by n(a)(x) = « - a is a ring isomorphism.



