
2. Simple modules

We first introduce the natural notion of maps between modules.

Definition 2.1. Let R be a ring and let M and N be right R-modules. The

map f : N ! M is called R-linear if for all x,y 2 N and a 2 R,

f(x+ y) = f(x) + f(y)

f(x · a) = f(x) · a.

The set of R-linear maps f : N ! M is denoted by HomR(N,M).

Remark 2.2. The set HomR(N,M) of R-linear maps from N to M is an

abelian group with addition defined by (f + g)(x) = f(x) + g(x). If M and N are

equal, we also write EndR(M) = HomR(M,M). It is a ring in which the product

of f and g is the composition f � g defined by (f � g)(x) = f(g(x)).

Example 2.3. Let R be a ring and let M and N be free right R-modules with

finite bases (x1, . . . ,xm) and (y1, . . . ,yn). If f : N ! M is an R-linear map, then

we let A be the m⇥ n-matrix, whose entries aij 2 R are defined by

f(yj) = x1a1j + x2a2j + · · ·+ xmamj .

In this situation, we find, for a general element y = y1s1 + · · ·+ ynsn of N , that

f(y) = f(y1)s1 + · · ·+ f(yn)sn

= (x1a11 + · · ·+ xmam1)s1 + · · ·+ (x1a1n + · · ·+ xmamn)sn

= x1(a11s1 + · · ·+ a1nsn) + · · ·+ xm(am1s1 + · · ·+ amnsn).

Hence, if y = y1s1 + · · ·+ ynsn, then f(y) = x1r1 + . . .xmrm, where
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We say that the matrix A represents the R-linear maps f : N ! M with respect to

the bases (y1, . . . ,yn) of N and (x1, . . . ,xm) of M . We note that it is important

here to consider right R-modules and not left R-modules. With left R-modules, we

would obtain “row vectors” instead of “column vectors.”

Proposition 2.4. Suppose that M , N , and P are free right R-modules with
finite bases (x1, . . . ,xm), (y1, . . . ,yn), and (z1, . . . , zp), respectively. Let A be the
m ⇥ n-matrix that represents the R-linear map f : N ! M with respect to the
bases (y1, . . . ,yn) of N and (x1, . . . ,xm) of M , and let B be the n⇥ p-matrix that
represents the R-linear map g : P ! N with respect to the bases (z1, . . . , zp) of P
and (y1, . . . ,yn) of N . Then the m⇥ p-matrix C that represents the R-linear map
f � g : P ! M with respect to the bases (z1, . . . , zp) of P and (x1, . . . ,xm) of M is

C = AB.

Proof. We let z = z1t1 + · · · + zptp be a general element of P , and write

g(z) = y1s1 + · · · + ynsn, and f(g(z)) = x1r1 + · · · + xmrm. By the definition of
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the matrices A and B, we have
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By the definition of the matrix C and by the associativity of matrix product, we

conclude that C = AB as stated. ⇤
Corollary 2.5. Let R be a ring and let M be a free right R-module with a

finite basis (x1, . . . ,xm), and let

↵ : Mm(R) ! EndR(M)

be the map that to an m ⇥ m-matrix A assigns the R-linear map f : M ! M
that is represented by A with respect to the basis (x1, . . . ,xm) for both domain and
codomain. The map ↵ is a ring isomorphism.

Proof. Every R-linear map f : M ! M is represented with respect to the

basis (x1, . . . ,xm) of M by the unique m ⇥ m-matrix defined in Example 2.3.

Hence, the map ↵ is a bijection. Moreover, the R-linear map represented by the

identity matrix Im is the identity map idM ; the R-linear map represented by a sum

A + B of two matrices A and B is the sum f + g of the R-linear maps f and g
represented by the matrices A and B, respectively; and, by Proposition 2.4, the

R-linear map represented by the matrix product A · B is the composition f � g of

the R-linear maps f and g. This shows that ↵ is a ring homomorphism, and hence,

a ring isomorphism. ⇤
Remark 2.6. Let R = (R,+, ·) be a ring. The opposite ring Rop

= (R,+, ⇤)
has the same set R and addition + but the “opposite” product a ⇤ b = b · a. A left

R-module M = (M,+, ·) determines the right Rop
-module Mop

= (M,+, ⇤) with

x ⇤ a = a · x. Now, a map f : M ! M is R-linear if and only if f : Mop ! Mop
is

Rop
-linear, and therefore, the rings EndR(M) and EndRop(Mop

) are equal. Hence,

if M is a free left R-module with a finite basis (x1, . . . ,xm), then the map

↵ : Mm(Rop
) ! EndR(M)

from Corollary 2.5 is a ring isomorphism.

Exercise 2.7. Let R be a ring. Show that the map

(�)
t
: Mn(R)

op ! Mn(R
op
)

that takes a matrix A = (aij) to its transpose At
= (aji) is a ring isomorphism.
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A division ring R is the simplest kind of ring in the sense that every right (or

left) R-module is a free module. We will next consider a slightly more complicated

class of rings that are called simple rings.

Definition 2.8. Let R be a ring and let M and M 0
be left R-modules.

(i) The direct sum of M and M 0
is the left R-module

M �M 0
= {(x,x0

) | x 2 M,x0 2 M 0}

with sum and scalar multiplication defined by

(x,x0
) + (y,y0

) = (x+ y,x0
+ y0

)

a · (x,x0
) = (ax, ax0

).

(ii) A subset N ⇢ M is a submodule if for all x,y 2 N and a 2 R, x+ y 2 N
and ax 2 N .

(iii) The sum of two submodules N,N 0 ⇢ M is the submodule

N +N 0
= {x+ x0 | x 2 N,x0 2 N 0} ⇢ M.

(iv) The sum of two submodules N,N 0 ⇢ M is direct if the map

N �N 0 ! N +N 0

that to (x,x0
) assigns x + x0

is an isomorphism, or equivalently, if the

intersection N \N 0
is the zero submodule {0}.

Example 2.9. (1) Let R be a ring. A submodule I ⇢ R of R considered as a

left R-module is called a left ideal of R.

(2) Let m,n 2 Z be integers. Then mZ, nZ ⇢ Z are ideals and

mZ \ nZ = [m,n]Z ⇢ mZ+ nZ = (m,n)Z

where (m,n) and [m,n] are the greatest common divisor and least common multiple

of m and n, respectively. The sum mZ+ nZ is direct if and only if one or both of

m and n are zero.

(3) Let R be a ring and let M2(R) be the ring of 2⇥ 2-matrices. The subsets

P2,1(R) =

⇢✓
a 0

c 0

◆
| a, c 2 R

�
⇢ M2(R)

P2,2(R) =

⇢✓
0 b
0 d

◆
| b, d 2 R

�
⇢ M2(R)

are left ideals, and the sum P2,1(R)+P2,2(R) is direct and equals M2(R). Similarly,

the subsets

Q2,1(R) =

⇢✓
a b
0 0

◆
| a, b 2 R

�
⇢ M2(R)

Q2,2(R) =

⇢✓
0 0

c d

◆
| c, d 2 R

�
⇢ M2(R)

are right ideals, and the sum Q2,1(R) +Q2,2(R) is direct and equal to M2(R).

Definition 2.10. Let R be a ring.

(1) A left R-module S is simple if it is non-zero and if the only submodules

of S are {0} and S.
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(2) A left R-module M is semi-simple if it is a direct sum

M = S1 + · · ·+ Sn

of finitely many simple submodules.

Example 2.11. Let D be a division ring. We claim that as a left module over

itself, D is simple. Indeed, let N ⇢ D be a non-zero submodule and let a 2 N be

a non-zero element. If b 2 D, then b = ba�1 · a 2 N , and hence, N = D which

proves the claim. Let S be any simple left D-module and let x 2 S be a non-zero

element. We claim that the D-linear map f : D ! S defined by f(a) = a · x is an

isomorphism. Indeed, the image f(D) ⇢ S is a submodule and it is not zero since

x 2 f(D). Since S is simple, we necessarily have f(D) = S, so f is surjective.

Similarly, the kernel ker(f) = {a 2 D | f(a) = 0} ⇢ D is a submodule, and it is

not all of D since f(1) = x 6= 0. Since D is simple, we have ker(f) = {0}, so f is

injective. This proves the claim. We conclude that a division ring D has a unique

isomorphism class of simple left D-modules.

Lemma 2.12. Let D be a division ring and let R = Mn(D). The left R-module
of column n-vectors S = Mn,1(D) is a simple left R-module.

Proof. Let N ⇢ S be a non-zero submodule. We must show that N = S. We

first choose a non-zero vector x1 2 N . By Theorem 1.10, we can choose additional

vectors x2, . . . ,xn 2 S such that the family (x1,x2, . . . ,xn) is a basis of S as a

right D-vector space. Here and below, we use that, by Remark 1.12, every basis of

S as a right D-vector space has n elements. Now let A 2 R be the n ⇥ n-matrix

whose jth column is xj . We claim that A is invertible. Indeed, since (x1, . . . ,xn)

is a right D-vector space basis, there exists B 2 R such that AB = I which, by

Gauss elimination, implies that A and B are invertible and that BA = I. Hence

Bx1 = BAe1 = e1 =

0
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which shows that e1 2 N . Now, given x 2 S, we choose C 2 R with x as its first

column. Then x = Ce1 2 N which shows that x 2 N as desired. ⇤
Proposition 2.13 (Schur’s lemma). Let R be a ring and let S be a simple right

R-module. Then the ring EndR(S) is a division ring.

Proof. Let f : S ! S be a non-zero R-linear map. We must show that there

exists an R-linear map g : S ! S such that both f � g and g � f are the identity

map of S. It su�ces to show that f is a bijection. For the inverse of an R-linear

bijection is automatically R-linear. Now, the image f(S) ⇢ S is a submodule,

which is non-zero, since f is non-zero. As S is simple, we conclude that f(S) = S,
so f is surjective. Similarly, ker(f) ⇢ S is a submodule, which is not all of S, since
f is not the zero map. Since S is simple, we conclude that ker(f) is zero, so f is

injective. ⇤
Exercise 2.14. Let D be a division ring, and let R = Mn(D) be the matrix

ring. The set S = Mn,1(D) of column vectors is both a left R-module and a right

D-module, and if A 2 R, x 2 S, and a 2 D, then (A ·x) · a = A · (x · a). Show that

the map ⌘ : Dop ! EndR(S) defined by ⌘(a)(x) = x · a is a ring isomorphism.


