2. Simple modules

We first introduce the natural notion of maps between modules.

DEFINITION 2.1. Let R be a ring and let M and N be right R-modules. The map $f: N \to M$ is called R-linear if for all $\boldsymbol{x}, \boldsymbol{y} \in N$ and $a \in R$,

$$egin{aligned} f(oldsymbol{x}+oldsymbol{y}) &= f(oldsymbol{x}) + f(oldsymbol{y}) \ f(oldsymbol{x}\cdot a) &= f(oldsymbol{x})\cdot a. \end{aligned}$$

The set of R-linear maps $f: N \to M$ is denoted by $\operatorname{Hom}_R(N, M)$.

REMARK 2.2. The set $\operatorname{Hom}_R(N, M)$ of R-linear maps from N to M is an abelian group with addition defined by $(f+g)(\boldsymbol{x}) = f(\boldsymbol{x}) + g(\boldsymbol{x})$. If M and N are equal, we also write $\operatorname{End}_R(M) = \operatorname{Hom}_R(M, M)$. It is a ring in which the product of f and g is the composition $f \circ g$ defined by $(f \circ g)(\boldsymbol{x}) = f(g(\boldsymbol{x}))$.

EXAMPLE 2.3. Let R be a ring and let M and N be free right R-modules with finite bases $(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_m)$ and $(\boldsymbol{y}_1, \ldots, \boldsymbol{y}_n)$. If $f: N \to M$ is an R-linear map, then we let A be the $m \times n$ -matrix, whose entries $a_{ij} \in R$ are defined by

$$f(\boldsymbol{y}_j) = \boldsymbol{x}_1 a_{1j} + \boldsymbol{x}_2 a_{2j} + \dots + \boldsymbol{x}_m a_{mj}.$$

In this situation, we find, for a general element $\boldsymbol{y} = \boldsymbol{y}_1 s_1 + \cdots + \boldsymbol{y}_n s_n$ of N, that

$$f(\mathbf{y}) = f(\mathbf{y}_1)s_1 + \dots + f(\mathbf{y}_n)s_n$$

= $(\mathbf{x}_1a_{11} + \dots + \mathbf{x}_ma_{m1})s_1 + \dots + (\mathbf{x}_1a_{1n} + \dots + \mathbf{x}_ma_{mn})s_n$
= $\mathbf{x}_1(a_{11}s_1 + \dots + a_{1n}s_n) + \dots + \mathbf{x}_m(a_{m1}s_1 + \dots + a_{mn}s_n).$

Hence, if $\boldsymbol{y} = \boldsymbol{y}_1 s_1 + \cdots + \boldsymbol{y}_n s_n$, then $f(\boldsymbol{y}) = \boldsymbol{x}_1 r_1 + \cdots + \boldsymbol{x}_m r_m$, where

$$\begin{pmatrix} r_1 \\ r_2 \\ \vdots \\ r_m \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix}$$

We say that the matrix A represents the R-linear maps $f: N \to M$ with respect to the bases $(\boldsymbol{y}_1, \ldots, \boldsymbol{y}_n)$ of N and $(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_m)$ of M. We note that it is important here to consider right R-modules and not left R-modules. With left R-modules, we would obtain "row vectors" instead of "column vectors."

PROPOSITION 2.4. Suppose that M, N, and P are free right R-modules with finite bases $(\mathbf{x}_1, \ldots, \mathbf{x}_m)$, $(\mathbf{y}_1, \ldots, \mathbf{y}_n)$, and $(\mathbf{z}_1, \ldots, \mathbf{z}_p)$, respectively. Let A be the $m \times n$ -matrix that represents the R-linear map $f: N \to M$ with respect to the bases $(\mathbf{y}_1, \ldots, \mathbf{y}_n)$ of N and $(\mathbf{x}_1, \ldots, \mathbf{x}_m)$ of M, and let B be the $n \times p$ -matrix that represents the R-linear map $g: P \to N$ with respect to the bases $(\mathbf{z}_1, \ldots, \mathbf{z}_p)$ of Pand $(\mathbf{y}_1, \ldots, \mathbf{y}_n)$ of N. Then the $m \times p$ -matrix C that represents the R-linear map $f \circ g: P \to M$ with respect to the bases $(\mathbf{z}_1, \ldots, \mathbf{z}_p)$ of P and $(\mathbf{x}_1, \ldots, \mathbf{x}_m)$ of M is

$$C = AB.$$

PROOF. We let $\boldsymbol{z} = \boldsymbol{z}_1 t_1 + \cdots + \boldsymbol{z}_p t_p$ be a general element of P, and write $g(\boldsymbol{z}) = \boldsymbol{y}_1 s_1 + \cdots + \boldsymbol{y}_n s_n$, and $f(g(\boldsymbol{z})) = \boldsymbol{x}_1 r_1 + \cdots + \boldsymbol{x}_m r_m$. By the definition of

the matrices A and B, we have

$$\begin{pmatrix} r_1 \\ r_2 \\ \vdots \\ r_m \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix}$$
$$\begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix} = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{np} \end{pmatrix} \begin{pmatrix} t_1 \\ t_2 \\ \vdots \\ t_p \end{pmatrix}$$

and hence

$$\begin{pmatrix} r_1 \\ r_2 \\ \vdots \\ r_m \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{np} \end{pmatrix} \begin{pmatrix} t_1 \\ t_2 \\ \vdots \\ t_p \end{pmatrix}.$$

By the definition of the matrix C and by the associativity of matrix product, we conclude that C = AB as stated.

COROLLARY 2.5. Let R be a ring and let M be a free right R-module with a finite basis $(\mathbf{x}_1, \ldots, \mathbf{x}_m)$, and let

$$\alpha \colon M_m(R) \to \operatorname{End}_R(M)$$

be the map that to an $m \times m$ -matrix A assigns the R-linear map $f: M \to M$ that is represented by A with respect to the basis $(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_m)$ for both domain and codomain. The map α is a ring isomorphism.

PROOF. Every *R*-linear map $f: M \to M$ is represented with respect to the basis (x_1, \ldots, x_m) of M by the unique $m \times m$ -matrix defined in Example 2.3. Hence, the map α is a bijection. Moreover, the *R*-linear map represented by the identity matrix I_m is the identity map id_M ; the *R*-linear map represented by a sum A + B of two matrices A and B is the sum f + g of the *R*-linear maps f and g represented by the matrix product $A \cdot B$ is the composition 2.4, the *R*-linear maps f and g. This shows that α is a ring homomorphism, and hence, a ring isomorphism.

REMARK 2.6. Let $R = (R, +, \cdot)$ be a ring. The opposite ring $R^{\text{op}} = (R, +, *)$ has the same set R and addition + but the "opposite" product $a * b = b \cdot a$. A left R-module $M = (M, +, \cdot)$ determines the right R^{op} -module $M^{\text{op}} = (M, +, *)$ with $x * a = a \cdot x$. Now, a map $f \colon M \to M$ is R-linear if and only if $f \colon M^{\text{op}} \to M^{\text{op}}$ is R^{op} -linear, and therefore, the rings $\text{End}_R(M)$ and $\text{End}_{R^{\text{op}}}(M^{\text{op}})$ are equal. Hence, if M is a free *left* R-module with a finite basis (x_1, \ldots, x_m) , then the map

$$\alpha \colon M_m(R^{\mathrm{op}}) \to \operatorname{End}_R(M)$$

from Corollary 2.5 is a ring isomorphism.

EXERCISE 2.7. Let R be a ring. Show that the map

$$(-)^t \colon M_n(R)^{\mathrm{op}} \to M_n(R^{\mathrm{op}})$$

that takes a matrix $A = (a_{ij})$ to its transpose $A^t = (a_{ji})$ is a ring isomorphism.

A division ring R is the simplest kind of ring in the sense that every right (or left) R-module is a free module. We will next consider a slightly more complicated class of rings that are called simple rings.

DEFINITION 2.8. Let R be a ring and let M and M' be left R-modules.

(i) The direct sum of M and M' is the left R-module

 $M \oplus M' = \{(\boldsymbol{x}, \boldsymbol{x}') \mid \boldsymbol{x} \in M, \boldsymbol{x}' \in M'\}$

with sum and scalar multiplication defined by

$$(x, x') + (y, y') = (x + y, x' + y')$$

 $a \cdot (x, x') = (ax, ax').$

- (ii) A subset $N \subset M$ is a submodule if for all $\boldsymbol{x}, \boldsymbol{y} \in N$ and $a \in R, \, \boldsymbol{x} + \boldsymbol{y} \in N$ and $a\boldsymbol{x} \in N$.
- (iii) The sum of two submodules $N, N' \subset M$ is the submodule

$$N+N' = \{ \boldsymbol{x} + \boldsymbol{x}' \mid \boldsymbol{x} \in N, \boldsymbol{x}' \in N' \} \subset M.$$

(iv) The sum of two submodules $N, N' \subset M$ is *direct* if the map

$$N \oplus N' \to N + N$$

that to $(\boldsymbol{x}, \boldsymbol{x}')$ assigns $\boldsymbol{x} + \boldsymbol{x}'$ is an isomorphism, or equivalently, if the intersection $N \cap N'$ is the zero submodule $\{\mathbf{0}\}$.

EXAMPLE 2.9. (1) Let R be a ring. A submodule $I \subset R$ of R considered as a left R-module is called a *left ideal* of R.

(2) Let $m, n \in \mathbb{Z}$ be integers. Then $m\mathbb{Z}, n\mathbb{Z} \subset \mathbb{Z}$ are ideals and

$$m\mathbb{Z} \cap n\mathbb{Z} = [m, n]\mathbb{Z} \subset m\mathbb{Z} + n\mathbb{Z} = (m, n)\mathbb{Z}$$

where (m, n) and [m, n] are the greatest common divisor and least common multiple of m and n, respectively. The sum $m\mathbb{Z} + n\mathbb{Z}$ is direct if and only if one or both of m and n are zero.

(3) Let R be a ring and let $M_2(R)$ be the ring of 2×2 -matrices. The subsets

$$P_{2,1}(R) = \left\{ \begin{pmatrix} a & 0 \\ c & 0 \end{pmatrix} \mid a, c \in R \right\} \subset M_2(R)$$
$$P_{2,2}(R) = \left\{ \begin{pmatrix} 0 & b \\ 0 & d \end{pmatrix} \mid b, d \in R \right\} \subset M_2(R)$$

are left ideals, and the sum $P_{2,1}(R) + P_{2,2}(R)$ is direct and equals $M_2(R)$. Similarly, the subsets

$$Q_{2,1}(R) = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \mid a, b \in R \right\} \subset M_2(R)$$
$$Q_{2,2}(R) = \left\{ \begin{pmatrix} 0 & 0 \\ c & d \end{pmatrix} \mid c, d \in R \right\} \subset M_2(R)$$

are right ideals, and the sum $Q_{2,1}(R) + Q_{2,2}(R)$ is direct and equal to $M_2(R)$.

DEFINITION 2.10. Let R be a ring.

(1) A left *R*-module *S* is *simple* if it is non-zero and if the only submodules of *S* are $\{0\}$ and *S*.

(2) A left R-module M is semi-simple if it is a direct sum

$$M = S_1 + \dots + S_n$$

of finitely many simple submodules.

EXAMPLE 2.11. Let D be a division ring. We claim that as a left module over itself, D is simple. Indeed, let $N \subset D$ be a non-zero submodule and let $a \in N$ be a non-zero element. If $b \in D$, then $b = ba^{-1} \cdot a \in N$, and hence, N = D which proves the claim. Let S be any simple left D-module and let $\mathbf{x} \in S$ be a non-zero element. We claim that the D-linear map $f: D \to S$ defined by $f(a) = a \cdot \mathbf{x}$ is an isomorphism. Indeed, the image $f(D) \subset S$ is a submodule and it is not zero since $\mathbf{x} \in f(D)$. Since S is simple, we necessarily have f(D) = S, so f is surjective. Similarly, the kernel ker $(f) = \{a \in D \mid f(a) = \mathbf{0}\} \subset D$ is a submodule, and it is not all of D since $f(1) = \mathbf{x} \neq \mathbf{0}$. Since D is simple, we have ker $(f) = \{\mathbf{0}\}$, so f is injective. This proves the claim. We conclude that a division ring D has a unique isomorphism class of simple left D-modules.

LEMMA 2.12. Let D be a division ring and let $R = M_n(D)$. The left R-module of column n-vectors $S = M_{n,1}(D)$ is a simple left R-module.

PROOF. Let $N \subset S$ be a non-zero submodule. We must show that N = S. We first choose a non-zero vector $\mathbf{x}_1 \in N$. By Theorem 1.10, we can choose additional vectors $\mathbf{x}_2, \ldots, \mathbf{x}_n \in S$ such that the family $(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n)$ is a basis of S as a right D-vector space. Here and below, we use that, by Remark 1.12, every basis of S as a right D-vector space has n elements. Now let $A \in R$ be the $n \times n$ -matrix whose jth column is \mathbf{x}_j . We claim that A is invertible. Indeed, since $(\mathbf{x}_1, \ldots, \mathbf{x}_n)$ is a right D-vector space basis, there exists $B \in R$ such that AB = I which, by Gauss elimination, implies that A and B are invertible and that BA = I. Hence

$$B\boldsymbol{x}_1 = BA\boldsymbol{e}_1 = \boldsymbol{e}_1 = \begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix}$$

which shows that $e_1 \in N$. Now, given $x \in S$, we choose $C \in R$ with x as its first column. Then $x = Ce_1 \in N$ which shows that $x \in N$ as desired.

PROPOSITION 2.13 (Schur's lemma). Let R be a ring and let S be a simple right R-module. Then the ring $\operatorname{End}_R(S)$ is a division ring.

PROOF. Let $f: S \to S$ be a non-zero R-linear map. We must show that there exists an R-linear map $g: S \to S$ such that both $f \circ g$ and $g \circ f$ are the identity map of S. It suffices to show that f is a bijection. For the inverse of an R-linear bijection is automatically R-linear. Now, the image $f(S) \subset S$ is a submodule, which is non-zero, since f is non-zero. As S is simple, we conclude that f(S) = S, so f is surjective. Similarly, ker $(f) \subset S$ is a submodule, which is not all of S, since f is not the zero map. Since S is simple, we conclude that ker(f) is zero, so f is injective.

EXERCISE 2.14. Let D be a division ring, and let $R = M_n(D)$ be the matrix ring. The set $S = M_{n,1}(D)$ of column vectors is both a left R-module and a right D-module, and if $A \in R$, $\mathbf{x} \in S$, and $a \in D$, then $(A \cdot \mathbf{x}) \cdot a = A \cdot (\mathbf{x} \cdot a)$. Show that the map $\eta: D^{\text{op}} \to \text{End}_R(S)$ defined by $\eta(a)(\mathbf{x}) = \mathbf{x} \cdot a$ is a ring isomorphism.