
4. Representations of groups

Let k be a field, and let G be a group. We recall that the group ring k[G] is
defined to be the free k-module with basis (g)g2G and with multiplication

(
X

g2G

agg) · (
X

g2G

bgg) =
X

g2G

(
X

hk=g

ahbk)g.

A left k[G]-module V is also said to be a k-linear representation of G. It determines
and is determined by the ring homomorphism

⇢ : k[G] ! Endk(V )

defined by

⇢(
X

g2G

agg)(v) = (
X

g2G

agg) · v.

In particular, this map assigns to every element g 2 G the k-linear endomorphism
⇢(g) : V ! V of the k-vector space V , so, in this way, the elements of the (abstract)
group G become represented by (concrete) endomorphisms of the vector space V ,
whence the name. In fact, the k-linear endomorphism ⇢(g) : V ! V is a k-linear
automorphism with inverse ⇢(g�1) : V ! V .

We have proved Maschke’s theorem, which states that if the group G is finite
and if its order is invertible in k, then the group ring k[G] is a semi-simple ring.
This implies that every finitely generated left k[G]-module is semi-simple.

Example 4.1. Let Cn be a cyclic group of order n. Maschke’s theorem shows
that the group ring C[Cn] is semi-simple, and we now determine its structure. We
choose a generator g 2 Cn and a primitive nth root of unity ⇣n 2 C. For 0 6 k < n,
we define the left C[Cn]-module C(⇣k

n) to be the sub-C-vector space of C generated
by the family (⇣jk

n )06j<n with the left C[Cn]-module structure given by

(
n�1X

j=0

ajg
j) · z =

n�1X

j=0

aj⇣
jk
n z.

The left C[Cn]-module C(⇣k
n) is simple. For as a C-vector space, C(⇣k

n) = C, and
therefore has no non-trivial proper submodules. Suppose that f : C(⇣k

n) ! C(⇣l
n) is

a C[Cn]-linear isomorphism. Then we have

⇣
k
nf(1) = f(⇣k

n) = f(g · 1) = g · f(1) = ⇣
l
nf(1),

where the first and third equalities follows from C[Cn]-linearity. Since f(1) 6= 0,
we conclude that k = l. So the n simple left C[Cn]-modules C(⇣k

n), 0 6 k < n, are
pairwise non-isomorphic, and therefore, Theorem 3.5 shows that the map

f :
n�1M

k=0

C(⇣k
n) ! C[Cn]

that to w = (wk)06k<n assigns z = f(w) =
P

06k<n wkek, where

ek =
n�1X

j=0

⇣
�jk
n g

j 2 C[Cn],

is an isomorphism of left C[Cn]-modules. The ring EndC[Cn](C(⇣k
n)) is isomorphic

to the field C for all 0 6 k < n.
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Remark 4.2. The identification in Example 4.1 of the complex group ring
C[Cn] is called the discrete Fourier transform and is of great practical importance.
Indeed, it is the foundation for the digital representation of various signals, including
audio and video signals. Let us define a signal to be a function � : R ! C. We call
�(t) 2 C the signal at time t 2 R.1 To digitally represent the signal in the time
interval [0, 1), we choose some (large) sampling rate n and record the signal at the
times t = j/n with 0 6 j < n. That is, we record the vector

z =
n�1X

j=0

�(j/n)gj 2 C[Cn]

and think of this as an approximation of the signal in the time interval [0, 1). We
wish to determine the unique vector

w = (wk)06k<n 2
n�1M

k=0

C(⇣k
n)

such that f(w) = z. We interpret the component wk as the contribution to the
signal with frequency k/n. We think of w as a better representation of the signal
than z; if we compress the signal before e.g. transmitting it or storing it, then we
loose less essential information by compressing w instead of z. We let

e0
k 2

n�1M

l=0

C(⇣l
n)

be the unique vector such that f(e0
k) = ek. So e0

k has lth component �kl 2 C(⇣l
n),

where we use Kronecker’s symbol. Now, the matrix Pn 2 Mn(C) that represents

f :
n�1M

k=0

C(⇣k
n) ! C[Cn]

with respect to the basis (e0
k)06k<n of the domain and the basis (gj)06j<n of the

codomain is given by

Pn = (⇣�jk
n )06j,k<n 2 Mn(C).

So the coordinates x = (wk)06k<n of w with respect to the basis (e0
k)06k<n and

the coordinates y = (�(j/n))06j<n of z with respect to the basis (gj)06j<n satisfy

y = Pnx.

It is easy to give a formula for the inverse matrix of Pn. Indeed, recall that if ⇣d is
a primitive dth root of unity, then

d�1X

i=0

⇣
i
d =

(
1 if d = 1,

0 if d > 1.

Hence, the (i, k)th entry in the matrix P
⇤
nPn is

n�1X

j=0

(⇣�ij
n )⇤

⇣
�jk
n =

n�1X

j=0

⇣
ij
n ⇣

�jk
n =

n�1X

j=0

(⇣i�k
n )j =

(
n if i = k,

0 if i 6= k,

1
Traditionally, one calls the modulus |�(t)| 2 [0,1) and the argument arg(�(t)) 2 [0, 2⇡) for

the amplitude and the phase of the signal at time t, respectively.
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since ⇣
k�i
n is a primitive dth root of unity for some divisor d in n. So P

⇤
nPn = nIn,

and since also PnP
⇤
n = nIn, we find that

P
�1
n =

1

n
P

⇤
n =

1

n
(⇣jk

n )06j,k<n.

A priori we need to calculate the n
2 complex numbers ⇣

jk
n with 0 6 j, k < n to

determine the matrix Pn and its inverse. However, if n = 2m is a power of 2,
then Pn can be calculated much more e↵ectively. So let n = 2r, let Tn be the
permutation matrix, whose first r columns are the odd columns of In, and whose
last r columns are the even columns of In, and let Dr be the diagonal matrix

Dr = diag(1, ⇣
�1
n , ⇣

�2
n , . . . , ⇣

�(r�1)
n ).

Then, as first noted by Gauss in 1805 and, independently, by Cooley and Tukey in
1965, one has the matrix identity

Pn =

✓
Ir Dr

Ir �Dr

◆✓
Pr O

O Pr

◆
Tn,

which greatly reduces the amount of calculation necessary to determine Pn. The
algorithm for calculating Pn for n = 2m based on this matrix identity is called the
fast Fourier transform2 and is one of the most important algorithms in terms of its
myriad applications. So starting from P1 =

�
1
�
, we find e.g.

P2 =

✓
1 1
1 �1

◆✓
1 0
0 1

◆✓
1 0
0 1

◆

=

✓
1 1
1 �1

◆

P4 =

0

BB@

1 0 1 0
0 1 0 �i

1 0 �1 0
0 1 0 i

1

CCA

0

BB@

1 1 0 0
1 �1 0 0
0 0 1 1
0 0 1 �1

1

CCA

0

BB@

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

1

CCA

=

0

BB@

1 1 1 1
1 �i �1 i

1 �1 1 �1
1 i �1 �i

1

CCA .

We leave it as an exercise to the reader to verify the matrix identity in general.

Example 4.3. Let us also determine the real group ring R[Cn], where Cn is
a cyclic group of order n. We again fix a generator g 2 Cn and a primitive nth
root of unity ⇣n 2 C. For 0 6 k < n, we define the left R[Cn]-module R(⇣k

n) to
be the sub-R-vector space R(⇣k

n) ⇢ C generated by the family of complex numbers
(⇣jk

n )06j<n and with the left R[Cn]-module structure given by

(
n�1X

j=0

ajg
j) · z =

n�1X

j=0

aj⇣
jk
n z.

The left R[Cn]-module R(⇣k
n) is simple. Indeed, if z, z

0 2 R(⇣k
n) are two non-zero

elements, then there exists ! 2 R[Cn] with ! · z = z
0. The dimension of R(⇣k

n) as

2
The time required to compute Pn by means of FFT is O(n logn).
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an R-vector space is

dimR(R(⇣k
n)) =

(
1 if ⇣

k
n 2 R,

2 if ⇣
k
n /2 R,

and the left R[Cn]-modules R(⇣k
n) and R(⇣l

n) are isomorphic if and only if the
complex numbers ⇣

k
n and ⇣

l
n are conjugate. Hence, by counting dimensions, we

conclude from Theorem 3.5 that, as a left R[Cn]-module,

R[Cn] =

bn/2cM

k=0

R(⇣k
n),

where bxc is the largest integer less than or equal to x. For example,

R[C3] = R(⇣0
3 ) � R(⇣1

3 ),

R[C4] = R(⇣0
4 ) � R(⇣1

4 ) � R(⇣2
4 ).

In general, for n = 2r even, the 1-dimensional representation R(⇣r
n) = R(�1) is

called the sign representation, since the left R[Cn]-module structure is given by

(
n�1X

j=0

ajg
j) · x =

n�1X

j=0

aj(�1)j
x.

Finally, the endomorphism ring EndR[Cn](R(⇣k
n)) is isomorphic to R, if k = 0 or if

n = 2r and k = r, and is isomorphic to C, otherwise.

Remark 4.4. Representations of groups are also important in chemistry and
physics. To wit, if a molecule has finite symmetry group G, then its wave function
must be a representation of G on the Hilbert space h =

N
a ha, where the tensor

product ranges over the atoms in the molecule, where the wave function of atom
a is a vector in ha, and where G acts on the tensor product by permuting the
tensor factors. In this way, the representation theory of finite groups determines
the relative likelihood of the outcome of chemical reactions.

In the standard model of elementary particle physics, the elementary particles
in the three generations (up-down, strange-charmed, top-bottom) of elementary
particles correpond to simple representations of the group

G = U(1) ⇥ SU(2) ⇥ SU(3).

This group is not finite, but it has a natural topology with respect to which it is
compact. In fact, the topological space G has the structure of a compact smooth
manifold, and the maps µ : G ⇥ G ! G and ◆ : G ! G given by multiplication
and inversion in the group G, respectively, are smooth maps. We say that G is a
Lie group. If V is a finite dimensional C-vector space, then AutC(V ) also has a
canonical Lie group structure, and by a representation of G on V we mean a map

⇢ : G ! AutC(V )

that is both smooth and a group homomorphism. We let SU(5) ⇢ M5(C) act on
C5 = M5,1(C) by matrix multiplication. This defines a simple representation of
SU(5) that we call the standard representation. By functoriality, we obtain an
induced action by the group SU(5) on the exterior algebra

⇤C(C5) =
M

06j65

⇤j
C(C5),
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and this again is a representation of SU(5). In fact, each exterior power ⇤j
C(C5) is

simple as an SU(5)-representation. We now consider the map

f : G = U(1) ⇥ SU(2) ⇥ SU(3) ! SU(5)

given by

f(↵, A, B) =

✓
↵

3
A 0

0 ↵
�2

B

◆
,

which is both smooth and a group homomorphism.3 Therefore, we can let G act on
⇤C(C5) by defining g · ! to be f(g) · !. As a G-representation, the exterior powers
⇤j
C(C5) with 0 < j < 5 are no longer simple, but decompose as direct sums of simple

representations. It turns out that the simple G-representations that appear in this
decomposition of the G-representation ⇤C(C5) precisely enumerate the elementary
fermions observed in nature; see the figure below, which is taken from [1]. This is
a purely phenomenological fact; nobody understands the reason why this is so! In
the figure, the basis of C5 is (u, d, r, g, b), which stands for up, down, red, green,
and blue. For example, rgb, which corresponds to the right-handed electron e

�
R, is

an abbreviations for r ^ g ^ b. The 1-dimensional subspace of ⇤3
C(C5) generated

by (r ^ g ^ b) is a simple G-representation. Similarly, the 3-dimensional subspace
of ⇤2

C(C5) generated by (d ^ r, d ^ g, d ^ b) is a simple G-representation, which
corresponds to the left-handed down-quark d

c
L. On the other hand, the left-handed

electron e
�
L and the left-handed neutrino ⌫L correspond to the simple 2-dimensional

representation of ⇤4
C(C5) generated by (d ^ r ^ g ^ b, u ^ r ^ g ^ b). Thus, these two

particles are actually one single particle, but we think of them as two particles, since
only the weak force mix them. Finally, the left-handed anti-neutrino ⌫̄L and the
right-handed neutrino ⌫R correspond to the simple 1-dimensional G-representations
⇤0
C(C5) and ⇤5

C(C5), respectively. Both of these representations are trivial, which,
in physics, means that ⌫̄L and ⌫R do not interact through any of the three forces
(electro-magnetic, weak, strong) described by the standard model. In fact, it is not
known whether or not ⌫̄L and ⌫R exist.
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isospin and one color. We must have u
c
L = u^ c and d

c
L = d^ c, where again c runs

over all the colors r, g, b. Now for the tricky part: the uL quarks live in the ⇤2C3

representation of SU(3), but this is isomorphic to the fundamental representation
of SU(3) on C3⇤, which is spanned by antired, antired and antiblue:

r = g ^ b, g = b ^ r, b = r ^ g.

These vectors form the basis of ⇤2C3 that is dual to r, g, and b under Hodge duality
in ⇤C3. So we must have

u
c
L = c,

where c can be any anticolor. Take heed of the fact that c is grade 2, even though
it may look like grade 1.

To work out the other grades, note that Hodge duality corresponds to switching
0’s and 1’s in our binary code. For instance, the dual of 01101 is 10010: or written
in terms of basis vectors, the dual of d ^ r ^ b is u ^ g. Thus given the binary codes
for the first few exterior powers:

⇤0C5 ⇤1C5 ⇤2C5

⌫L = 1 e
+
R = u e

+
L = u ^ d

⌫R = d u
c
L = u ^ c

d
c
R = c d

c
L = d ^ c

u
c
L = c

taking Hodge duals gives the binary codes for the rest:

⇤3C5 ⇤4C4 ⇤5C5

e
�
R = r ^ g ^ b e

�
L = d ^ r ^ g ^ b ⌫R = u ^ d ^ r ^ g ^ b

u
c
R = d ^ c ⌫L = u ^ r ^ g ^ b

d
c
R = u ^ c d

c
L = u ^ d ^ c

u
c
R = u ^ d ^ c

Putting these together, we get the binary code for every particle and antiparticle
in the first generation of fermions. To save space, let us omit the wedge product
symbols:

Table 4. Binary code for first-generation fermions, where c =
r, g, b and c = gb, br, rg

The Binary Code for SU(5)

⇤0C5 ⇤1C5 ⇤2C5 ⇤3C5 ⇤4C4 ⇤5C5

⌫L = 1 e
+
R = u e

+
L = ud e

�
R = rgb e

�
L = drgb ⌫R = udrgb

⌫R = d u
c
L = uc u

c
R = dc ⌫L = urgb

d
c
R = c d

c
L = dc d

c
R = uc d

c
L = udc

u
c
L = c u

c
R = udc

Now we can see a good, though not decisive, reason to choose ⇤0C5 �= ⌫L. With
this choice, and not the other, we get left-handed particles in the even grades, and

5oo
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3
The map f : G ! SU(5) is not quite injective; its kernel is a cyclic group of order 6.


