Pespectives in Mathematical Sciences: Report Problems

Due: Tuesday, May 29, 2018, in Science Building 1, Room 105.

Problem 1. Let R be a ring, not necessarily commutative, and recall that a left R-module M is said to be free, if it admits a basis. A left R-module P is said to be *projective*, if there exists a left R-module Q such that $P \oplus Q$ is free. We let $n \ge 1$ be an integer and consider the ring $R = M_n(A)$ of $n \times n$ -matrices with entries in a commutative and non-zero ring A. We further consider the abelian group $P = M_{n,1}(A)$ of $n \times 1$ -matrices with entries in A as a left R-module via matrix multiplication.

- (i) Show that the left *R*-module *P* is not free, unless n = 1.
- (ii) Show that the left *R*-module *P* is projective, for all $n \ge 1$.

[Hint: Consider the case n = 2 first.]

Problem 2. Let R be a commutative ring. Show that the following statements are equivalent.

- (i) For all $a, b \in R$, if ab = 0, then a = 0 or b = 0.
- (ii) The ring R is a subring of a field K.

[Hint: To prove that (i) implies (ii), observe that $S = R \setminus \{0\} \subset R$ is a multiplicative subset, and let K be the localization $S^{-1}R$.] A ring R for which the equivalent statements (i)–(ii) hold is called an *integral domain*.

Problem 3. Let R be a commutative ring and let $\mathfrak{p} \subset R$ be a proper ideal. Show that the following statements are equivalent.

- (i) For all elements $a, b \in R$, $ab \in \mathfrak{p}$ implies $a \in \mathfrak{p}$ or $b \in \mathfrak{p}$.
- (ii) For all ideals $\mathfrak{a}, \mathfrak{b} \subset R$, $\mathfrak{ab} \subset \mathfrak{p}$ implies $\mathfrak{a} \subset \mathfrak{p}$ or $\mathfrak{b} \subset \mathfrak{p}$.

An ideal $\mathfrak{p} \subset R$ for which the equivalent statements (i)–(ii) hold is called a *prime ideal*. We read (ii) as "if \mathfrak{p} divides \mathfrak{ab} , then \mathfrak{p} divides \mathfrak{a} or \mathfrak{p} divides \mathfrak{b} ."

Problem 4. Let $\varphi(n)$ be Euler's phi-function that counts the number of integers $0 \leq k < n$ such that k and n are relatively prime. Show that

$$\sum_{d \mid n} \varphi(d) = n$$

Here the sum ranges over all positive integers d that divide n.