

Report problems¹

Problem 1. Due: Tuesday, April 16, 2019, in Science Building 1, Room 105.

Let A be a ring and let $f \in A$ be an element. Show that the continuous map

$$\mathrm{Spec}(A_f) \rightarrow \mathrm{Spec}(A)$$

induced by the localization map $A \rightarrow A_f$ is a homeomorphism onto

$$D(f) \subset \mathrm{Spec}(A)$$

with the subspace topology.

(You can find the proof in the Stacks Project, but you must write it out by yourself.)

Problem 2. Due: Tuesday, April 23, 2019, in Science Building 1, Room 105.

This problem concerns the tensor product of commutative rings.

We first recall that the tensor product of two abelian groups A and B is defined to be the initial \mathbb{Z} -bilinear map $u: A \times B \rightarrow A \otimes B$. That u is \mathbb{Z} -bilinear means that u is \mathbb{Z} -linear each factor, and that u is initial with this property means that if also $f: A \times B \rightarrow C$ is a \mathbb{Z} -bilinear map, then there exists a *unique* \mathbb{Z} -linear map

$$A \otimes B \xrightarrow{\tilde{f}} C$$

such that $f = \tilde{f} \circ u$. The elements of $A \otimes B$ are called tensors, and the elements of the form $a \otimes b = u(a, b)$ are called elementary tensors. (Every tensor can be written as a sum of elementary tensors, but there is no unique way to do so.) Using this notation, the bilinearity of u amounts to the identities

$$(a_1 + a_2) \otimes b = a_1 \otimes b + a_2 \otimes b$$

$$a \otimes (b_1 + b_2) = a \otimes b_1 + a \otimes b_2.$$

Next, if A and B are commutative rings, then the formula

$$(a_1 \otimes b_1) \cdot (a_2 \otimes b_2) = a_1 a_2 \otimes b_1 b_2$$

defines a multiplication on the (additive) abelian group $A \otimes B$ that makes it a commutative ring. Moreover, the maps $i_1: A \rightarrow A \otimes B$ and $i_2: B \rightarrow A \otimes B$ defined by $i_1(a) = a \otimes 1$ and $i_2(b) = 1 \otimes b$ are ring homomorphisms with respect to this ring structure on $A \otimes B$. Show that the pair

$$(A \otimes B, (A \xrightarrow{i_1} A \otimes B \xleftarrow{i_2} B))$$

is a coproduct of A and B in the category of commutative rings.

Problem 3. Due: Tuesday, May 14, 2019, in Science Building 1, Room 105.

This problem concerns the simplest non-trivial case of *recollement*.

A *discrete valuation ring* is a ring V that is a principal ideal domain and that has exactly one non-zero maximal ideal $\mathfrak{m} \subset V$. Hence, $X = \mathrm{Spec}(V)$ has two points,

¹ Course homepage: www.math.nagoya-u.ac.jp/~larsh/teaching/S2019_A

namely, the *special point* $s \in X$ corresponding to the maximal ideal $\mathfrak{m} \subset V$ and the *generic point* $\eta \in X$ corresponding to the zero ideal $\{0\} \subset V$.

- (i) Show $\{s\} \subset X$ is closed and that $\{\eta\} \subset X$ is open.
- (ii) Show that the closure of $\{\eta\} \subset X$ is all of X .

Let K be the quotient field of V , let $k = V/\mathfrak{m}$ be the residue field of V , and let

$$\mathrm{Spec}(k) \xrightarrow{i} \mathrm{Spec}(V) \xleftarrow{j} \mathrm{Spec}(K)$$

be the maps induced by the projection map $V \rightarrow k$ and the localization map $V \rightarrow K$, respectively. We write $i: Y \rightarrow X$ and $j: U \rightarrow X$ for the two maps.

- (iii) Show that $i: Y \rightarrow X$ and $j: U \rightarrow X$ are the closed inclusion of the special point and the open inclusion of the generic point, respectively.

We now consider sheaves on sets on Y , U , and X . A sheaf F on Y is determined, up to unique isomorphism, by its set $F_0 = \Gamma(\{s\}, F)$ of global sections, and every set (in our universe of discourse) can occur. More precisely, the functor

$$Y^\sim \longrightarrow \mathrm{Sets}$$

that to a sheaf F on Y assigns the set $F_0 = \Gamma(\{s\}, F)$ is an equivalence of categories. In the same way, the functor

$$U^\sim \longrightarrow \mathrm{Sets}$$

that to a sheaf F on U assigns the set $F_1 = \Gamma(\{\eta\}, F)$ is an equivalence of categories. A sheaf F on X is determined, up to unique isomorphism, by the map

$$F_0 = \Gamma(X, F) \xrightarrow{\rho_U^X} F_1 = \Gamma(U, F),$$

and any map (in our universe of discourse) may occur. Again, the precise statement is that the functor

$$X^\sim \longrightarrow \mathrm{Ar}(\mathrm{Sets}) = \mathrm{Set}^{[1]}$$

that to a sheaf F on X assigns the map above is an equivalence of categories.

- (iv) Identifying the respective categories of sheaves of sets as above, describe the five functors in the *recollement* diagram

$$\begin{array}{ccccc} & & i^* & & \\ & \swarrow & & \searrow & \\ Y^\sim & \xrightarrow{i_*} & X^\sim & \xleftarrow{j^*} & U^\sim \\ & \uparrow & & \uparrow & \\ & & j_! & & \end{array}$$

(For example, $i_*(F_0) = (F_0 \rightarrow 1)$, where 1 is a terminal object.)