
1. Rings and modules

The notion of a module is a generalization of the familiar notion of a vector

space. The generalization consists in that the scalars used for scalar multiplication

are taken to be elements of a general ring. We first define rings.

Definition 1.1. A ring is a triple (R,+, ·) consisting of a set R and two maps

+: R⇥R ! R and · : R⇥R ! R that satisfy the following axioms.

(A1) For all a, b, c 2 R, a+ (b+ c) = (a+ b) + c.
(A2) There exists an element 0 2 R such that for all a 2 R, a+ 0 = a = 0 + a.
(A3) For every a 2 R, there exists b 2 R such that a+ b = 0 = b+ a.
(A4) For all a, b 2 R, a+ b = b+ a.
(P1) For all a, b, c 2 R, a · (b · c) = (a · b) · c.
(P2) There exists an element 1 2 R such that for all a 2 R, a · 1 = a = 1 · a.
(D) For all a, b, c 2 R, a · (b+ c) = (a · b)+(a · c) and (a+ b) · c = (a · c)+(b · c).

The ring (R,+, ·) is called commutative if the following further axiom holds.

(P3) For all a, b 2 R, ab = ba.

The axioms (A1)–(A4) and (P1)–(P2) express that (R,+) is an abelian group

and that (R, ·) is a monoid, respectively. The axiom (D) expresses that · distributes
over +. We often suppress · and write ab instead of a · b. The zero element 0 which

exist by axiom (A2) is unique. Indeed, if both 0 and 0
0
satisfy (A2), then

0
0
= 0 + 0

0
= 0.

Moreover, for a given a 2 R, the element b 2 R such that a+ b = 0 = b+ a which

exists by (A3) is unique. Indeed, if both b and b0 satisfy (A3), then

b = b+ 0 = b+ (a+ b0) = (b+ a) + b0 = 0 + b0 = b0.

We write �a instead of b for this element. Similarly, the element 1 2 R which exists

by axiom (P2) is unique. We abuse notation and write R instead of (R,+, ·).
Exercise 1.2. Let R be a ring. Show that for all a 2 R, a · 0 = 0 = 0 · a.
Example 1.3. (1) The ring Z of integers. It is a commutative ring.

(2) The rings Q, R, and C of rational numbers, real numbers, and complex

numbers respectively. These rings are all fields which mean that they are com-

mutative, that 1 6= 0, and that for all a 2 R r {0}, there exists b 2 R such that

ab = 1 = ba. This element b is uniquely determined by a and is written a�1
.

(3) The ring Z/nZ of integers modulo n. It is a field if and only if n is a prime

number.

(4) The ring H of quaternions given by the set of formal sums

H = {a+ ib+ jc+ kd | a, b, c, d 2 R}
with addition + and multiplication · defined by

(a+ ib+ jc+ kd) + (a0 + ib0 + jc0 + kd0)

= (a+ a0) + i(b+ b0) + j(c+ c0) + k(d+ d0)

(a+ ib+ jc+ kd) · (a0 + ib0 + jc0 + kd0)

= (aa0 � bb0 � cc0 � dd0) + i(ab0 + a0b+ cd0 � dc0)

+ j(ac0 + a0c+ db0 � bd0) + k(ad0 + a0d+ bc0 � b0c)
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It is a division ring which means that 1 6= 0 and that for all a 2 R r {0}, there
exists b 2 R such that ab = 1 = ba. A field is a commutative division ring. The

quartenions H is not a commutative ring. For instance, ij = k but ji = �k.
(5) Let R be a ring and. For every positive integer n, the set of n⇥n-matrices

with entries in R equipped with matrix addition and matrix multiplication forms

a ring Mn(R). The multiplicative unit element 1 2 Mn(R) is the identity matrix

and is usually written I. The ring Mn(R) is not commutative except if n = 1 and

R is commutative.

(6) The set C0
(X,C) of continuous complex valued functions on a topological

space X is a commutative ring under pointwise addition and multiplication. The

multiplicative unit element 1 2 C0
(X,C) is the constant function with value 1 2 C.

Definition 1.4. Let R and S be rings. A ring homomorphism from R to S is

a map for which the following (i)—(iii) hold.

(i) f(1) = 1

(ii) For all a, b 2 R, f(a+ b) = f(a) + f(b).
(iii) For all a, b 2 R, f(a · b) = f(a) · f(b).
Exercise 1.5. Let f : R ! S be a ring homomorphism. Show that f(0) = 0

and that for all a 2 R, f(�a) = �f(a).

Example 1.6. (1) For every ring R, the identity map id: R ! R is a ring

homomorphism. Moreover, if f : R ! S and g : S ! T are ring homomorphisms,

then so is the composite map g � f : R ! T .
(2) For every ring R, there is a unique ring homomorphism f : Z ! R. We

sometimes abuse notation and write n 2 R for the image of n 2 Z.

(3) There is a ring homomorphism f : H ! M4(R) defined by

f(a+ ib+ jc+ kd) =

0

BB@

a �b �c �d
b a �d c
c d a �b
d �c b a

1

CCA

(4) The canonical inclusions of Z in Q, of Q in R, of R in C, and of C in H all

are ring homomorphims.

Definition 1.7. Let R be a ring. A left R-module is a triple (M,+, ·) consisting
of a set M and two maps +: M ⇥M ! M and · : R ⇥M ! M such that (M,+)

satisfy the axioms (A1)–(A4) and such that the following additional axioms hold.

(M1) For all a, b 2 R and x 2 M , a · (b · x) = (a · b) · x.
(M2) For all a 2 R and x, y 2 M , a · (x+ y) = (a · x) + (b · y).
(M3) For all a, b 2 R and x 2 M , (a+ b) · x = (a · x) + (b · x).
(M4) For all x 2 M , 1 · x = x.

The notion of a right R-module is defined analogously.

Example 1.8. (1) Let R be a ring. We may view R both as a left R-module

and as a right R-module via the multiplication in R.

(2) The set Rn
considered as the set of “n-dimensional column vectors” is a

left Mn(R)-module and considered as the set of “n-dimensional row vectors” is a

right Mn(R)-module.

(3) Let n be a positive integer, let d be a divisor in n, and define

· : Z/nZ⇥ Z/dZ ! Z/dZ
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by (a+ nZ) · (x+ dZ) = ax+ dZ. This makes Z/dZ a left Z/nZ-module.

We next recall three very important notions from linear algebra. These notions

all concern families of elements. By definition, a family of elements in a set X is a

map x : I ! X from some set I to X. We also write (xi)i2I to indicate the family

x : I ! X with x(i) = xi, and we say that I is the indexing set of the family. We

remark that the families (1) and (1, 1) of elements in Z are distinct, since they have

distinct indexing sets, whereas the subsets {1} and {1, 1} of Z are equal.

Example 1.9. For every set X, there are two extreme examples of families of

elements in X, namely, the empty family ( ) with indexing set ;, and the identity

family (x)x2X with indexing set X.

Let R be a ring, and let (ai)i2I be a family of elements in R. We call

supp(a) = {i 2 I | ai 6= 0} ⇢ I

for the support of the family (ai)i2I , and we say that the family (ai)i2I has finite
support if its support supp(a) is a finite set. Let M be a left R-module, and let

(xi)i2I be a family of elements in M . If (ai)i2I is a family of elements in R with

the same indexing set I and with finite support, then we define

X

i2I

aixi =

X

i2supp(a)

aixi.

We say that a sum of this form is a linear combination of the family (xi)i2I . If the

support supp(a) is empty, then we define this sum to be equal to 0 2 M . We say

that the family (ai)i2I is the zero family, if its support is empty.

Definition 1.10. Let R be a ring, let M a left R-module, and let (xi)i2I be a

family of elements in M .

(1) The family (xi)i2I generates M if every element y 2 M can be written as

a linear combination of (xi)i2I .

(2) The family (xi)i2I is linearly independent if the only family (ai)i2I of

elements in R such that
P

i2I aixi = 0 is the zero family.

(3) The family (xi)i2I is a basis of M if it both generates M and is linearly

independent.

We say that an R-module M is free if it admits a basis.

Example 1.11. (1) The left Z/6Z-module Z/2Z in Example 1.8 (3) is not a

free module. The family (1+2Z ) generates Z/2Z but it is not linearly independent.

Indeed, (2+6Z) · (1+2Z) = 2+2Z is zero in Z/2Z, but 2+6Z is not zero in Z/6Z,
so the family (2 + 6Z) is not the zero family.

(2) Let M be a left R-module. The empty family ( ) is linearly independent,

and the identity family (x)x2M generates M . The empty family is a basis if and

only M = {0}, whereas the identity family never is a basis.

Let X be a set. If (xi)i2I is a family of elements in X, and if J ⇢ I is a subset

of the indexing set of the family, then we say that the family (xi)i2J is a subfamily

of the family (xi)i2I . In particular, the empty family is a subfamily of every family

of elements in X.
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Theorem 1.12. Every left module over a division ring R is free. More precisely,
if (xi)i2I is a family of elements in M that generates M , and if (xi)i2K is a linearly
independent subfamily thereof, then there exists K ⇢ J ⇢ I such that (xi)i2J is a
basis of M .

Proof. Let S be the set that consists of all subsets K ⇢ Z ⇢ I such that

the subfamily (xi)i2Z is linearly independent. The set S is partially ordered under

inclusion and we will use Zorn’s lemma to prove that S has a maximal element. To

this end, we must verify the following (i)–(ii).

(i) The set S is non-empty.

(ii) Every subset T ⇢ S which is totally ordered with respect to inclusion has

an upper bound in S.

We know that (i) holds, since K 2 S. To verify (ii), we let T ⇢ S be a totally

ordered subset of S and consider ZT =
S

Z2T Z. The family (xi)i2ZT is linearly

independent. Indeed, if X

i2ZT

aixi = 0,

then supp(a) ⇢ Z for some Z 2 T , since supp(a) is finite. But then
X

i2Z

aixi = 0,

which, by the linear independence of (xi)i2Z , implies that (ai)i2ZT is the zero

family. So ZT 2 S and Z ⇢ ZT for all Z 2 T , which proves (ii). By Zorn’s lemma,

S has a maximal element J , and since J 2 S, the subfamily (xi)i2J is linearly

independent and K ⇢ J ⇢ I.
It remains to show that (xi)i2J generates M . If this is not the case, then there

exists h 2 I such that xh is not a linear combination of (xi)i2J , and we claim that,

in this case, the subfamily (xi)i2J 0 with J 0
= J [ {h} ⇢ I is linearly independent.

Indeed, suppose that X

i2J 0

aixi = 0.

If ah 6= 0, then

xh = �a�1
h (

X

i2J

aixi),

which contradicts that xh is not a linear combination of (xi)i2J . (This is where we

use the assumption that R is a division ring.) So ah = 0, and hence

X

i2J

aixi = 0.

Since (xi)i2J is linearly independent, we conclude that (ai)i2J is the zero family.

Therefore, also (ai)i2J 0 is the zero family, which shows the claim that (xi)i2J 0

is linearly independent. But then J 0 2 S and J ⇢ J 0
, which contracticts the

maximality of J 2 S. This shows that (xi)i2J generates M , and hence, is a basis

of M , as desired. ⇤

Definition 1.13. A left module over a division ring is called a left vector space.
A right module over a division ring is called a right vector space.
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Remark 1.14. Let M be a left vector space over the division ring R. One

may show that if (xi)i2I is a basis of M , then the cardinality of the indexing set I
depends only on M and not on the particular choice of basis. This cardinality is

called the dimension of M . For a general ring R, two di↵erent bases of the same

free left R-module M may not have indexing sets of the same cardinality.

Exercise 1.15. The formula

(a+ ib+ jc+ kd) ·

0

BB@

x1

x2

x3

x3

1

CCA =

0

BB@

a �b �c �d
b a �d c
c d a �b
d �c b a

1

CCA

0

BB@

x1

x2

x3

x3

1

CCA

defines a left H-vector space structure on R
4
. Show that any family (x) consisting

of a single non-zero vector x 2 R
4
is a basis of this left H-vector space.


