

1. Rings and modules

The notion of a module is a generalization of the familiar notion of a vector space. The generalization consists in that the scalars used for scalar multiplication are taken to be elements of a general ring. We first define rings.

DEFINITION 1.1. A *ring* is a triple $(R, +, \cdot)$ consisting of a set R and two maps $+: R \times R \rightarrow R$ and $\cdot: R \times R \rightarrow R$ that satisfy the following axioms.

- (A1) For all $a, b, c \in R$, $a + (b + c) = (a + b) + c$.
- (A2) There exists an element $0 \in R$ such that for all $a \in R$, $a + 0 = a = 0 + a$.
- (A3) For every $a \in R$, there exists $b \in R$ such that $a + b = 0 = b + a$.
- (A4) For all $a, b \in R$, $a + b = b + a$.
- (P1) For all $a, b, c \in R$, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- (P2) There exists an element $1 \in R$ such that for all $a \in R$, $a \cdot 1 = a = 1 \cdot a$.
- (D) For all $a, b, c \in R$, $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$ and $(a + b) \cdot c = (a \cdot c) + (b \cdot c)$.

The ring $(R, +, \cdot)$ is called *commutative* if the following further axiom holds.

- (P3) For all $a, b \in R$, $ab = ba$.

The axioms (A1)–(A4) and (P1)–(P2) express that $(R, +)$ is an abelian group and that (R, \cdot) is a monoid, respectively. The axiom (D) expresses that \cdot distributes over $+$. We often suppress \cdot and write ab instead of $a \cdot b$. The zero element 0 which exist by axiom (A2) is unique. Indeed, if both 0 and $0'$ satisfy (A2), then

$$0' = 0 + 0' = 0.$$

Moreover, for a given $a \in R$, the element $b \in R$ such that $a + b = 0 = b + a$ which exists by (A3) is unique. Indeed, if both b and b' satisfy (A3), then

$$b = b + 0 = b + (a + b') = (b + a) + b' = 0 + b' = b'.$$

We write $-a$ instead of b for this element. Similarly, the element $1 \in R$ which exists by axiom (P2) is unique. We abuse notation and write R instead of $(R, +, \cdot)$.

EXERCISE 1.2. Let R be a ring. Show that for all $a \in R$, $a \cdot 0 = 0 = 0 \cdot a$.

EXAMPLE 1.3. (1) The ring \mathbb{Z} of integers. It is a commutative ring.

(2) The rings \mathbb{Q} , \mathbb{R} , and \mathbb{C} of rational numbers, real numbers, and complex numbers respectively. These rings are all *fields* which mean that they are commutative, that $1 \neq 0$, and that for all $a \in R \setminus \{0\}$, there exists $b \in R$ such that $ab = 1 = ba$. This element b is uniquely determined by a and is written a^{-1} .

(3) The ring $\mathbb{Z}/n\mathbb{Z}$ of integers modulo n . It is a field if and only if n is a prime number.

(4) The ring \mathbb{H} of quaternions given by the set of formal sums

$$\mathbb{H} = \{a + ib + jc + kd \mid a, b, c, d \in \mathbb{R}\}$$

with addition $+$ and multiplication \cdot defined by

$$\begin{aligned} & (a + ib + jc + kd) + (a' + ib' + jc' + kd') \\ &= (a + a') + i(b + b') + j(c + c') + k(d + d') \\ & (a + ib + jc + kd) \cdot (a' + ib' + jc' + kd') \\ &= (ad' - bb' - cc' - dd') + i(ab' + a'b + cd' - dc') \\ & \quad + j(ac' + a'c + db' - bd') + k(ad' + a'd + bc' - b'c) \end{aligned}$$

It is a *division ring* which means that $1 \neq 0$ and that for all $a \in R \setminus \{0\}$, there exists $b \in R$ such that $ab = 1 = ba$. A field is a commutative division ring. The quaternions \mathbb{H} is not a commutative ring. For instance, $ij = k$ but $ji = -k$.

(5) Let R be a ring and. For every positive integer n , the set of $n \times n$ -matrices with entries in R equipped with matrix addition and matrix multiplication forms a ring $M_n(R)$. The multiplicative unit element $1 \in M_n(R)$ is the identity matrix and is usually written I . The ring $M_n(R)$ is not commutative except if $n = 1$ and R is commutative.

(6) The set $C^0(X, \mathbb{C})$ of continuous complex valued functions on a topological space X is a commutative ring under pointwise addition and multiplication. The multiplicative unit element $1 \in C^0(X, \mathbb{C})$ is the constant function with value $1 \in \mathbb{C}$.

DEFINITION 1.4. Let R and S be rings. A *ring homomorphism* from R to S is a map for which the following (i)–(iii) hold.

- (i) $f(1) = 1$
- (ii) For all $a, b \in R$, $f(a + b) = f(a) + f(b)$.
- (iii) For all $a, b \in R$, $f(a \cdot b) = f(a) \cdot f(b)$.

EXERCISE 1.5. Let $f: R \rightarrow S$ be a ring homomorphism. Show that $f(0) = 0$ and that for all $a \in R$, $f(-a) = -f(a)$.

EXAMPLE 1.6. (1) For every ring R , the identity map $\text{id}: R \rightarrow R$ is a ring homomorphism. Moreover, if $f: R \rightarrow S$ and $g: S \rightarrow T$ are ring homomorphisms, then so is the composite map $g \circ f: R \rightarrow T$.

(2) For every ring R , there is a unique ring homomorphism $f: \mathbb{Z} \rightarrow R$. We sometimes abuse notation and write $n \in R$ for the image of $n \in \mathbb{Z}$.

- (3) There is a ring homomorphism $f: \mathbb{H} \rightarrow M_4(\mathbb{R})$ defined by

$$f(a + ib + jc + kd) = \begin{pmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{pmatrix}$$

(4) The canonical inclusions of \mathbb{Z} in \mathbb{Q} , of \mathbb{Q} in \mathbb{R} , of \mathbb{R} in \mathbb{C} , and of \mathbb{C} in \mathbb{H} all are ring homomorphisms.

DEFINITION 1.7. Let R be a ring. A *left R -module* is a triple $(M, +, \cdot)$ consisting of a set M and two maps $+: M \times M \rightarrow M$ and $\cdot: R \times M \rightarrow M$ such that $(M, +)$ satisfy the axioms (A1)–(A4) and such that the following additional axioms hold.

- (M1) For all $a, b \in R$ and $x \in M$, $a \cdot (b \cdot x) = (a \cdot b) \cdot x$.
- (M2) For all $a \in R$ and $x, y \in M$, $a \cdot (x + y) = (a \cdot x) + (b \cdot y)$.
- (M3) For all $a, b \in R$ and $x \in M$, $(a + b) \cdot x = (a \cdot x) + (b \cdot x)$.
- (M4) For all $x \in M$, $1 \cdot x = x$.

The notion of a right R -module is defined analogously.

EXAMPLE 1.8. (1) Let R be a ring. We may view R both as a left R -module and as a right R -module via the multiplication in R .

(2) The set R^n considered as the set of “ n -dimensional column vectors” is a left $M_n(R)$ -module and considered as the set of “ n -dimensional row vectors” is a right $M_n(R)$ -module.

- (3) Let n be a positive integer, let d be a divisor in n , and define

$$\cdot: \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/d\mathbb{Z} \rightarrow \mathbb{Z}/d\mathbb{Z}$$

by $(a + n\mathbb{Z}) \cdot (x + d\mathbb{Z}) = ax + d\mathbb{Z}$. This makes $\mathbb{Z}/d\mathbb{Z}$ a left $\mathbb{Z}/n\mathbb{Z}$ -module.

We next recall three very important notions from linear algebra. These notions all concern *families* of elements. By definition, a *family of elements* in a set X is a map $x: I \rightarrow X$ from some set I to X . We also write $(x_i)_{i \in I}$ to indicate the family $x: I \rightarrow X$ with $x(i) = x_i$, and we say that I is the indexing set of the family. We remark that the families (1) and $(1, 1)$ of elements in \mathbb{Z} are distinct, since they have distinct indexing sets, whereas the subsets $\{1\}$ and $\{1, 1\}$ of \mathbb{Z} are equal.

EXAMPLE 1.9. For every set X , there are two extreme examples of families of elements in X , namely, the empty family $()$ with indexing set \emptyset , and the identity family $(x)_{x \in X}$ with indexing set X .

Let R be a ring, and let $(a_i)_{i \in I}$ be a family of elements in R . We call

$$\text{supp}(a) = \{i \in I \mid a_i \neq 0\} \subset I$$

for the *support* of the family $(a_i)_{i \in I}$, and we say that the family $(a_i)_{i \in I}$ has *finite support* if its support $\text{supp}(a)$ is a finite set. Let M be a left R -module, and let $(x_i)_{i \in I}$ be a family of elements in M . If $(a_i)_{i \in I}$ is a family of elements in R with the same indexing set I and with finite support, then we define

$$\sum_{i \in I} a_i x_i = \sum_{i \in \text{supp}(a)} a_i x_i.$$

We say that a sum of this form is a *linear combination* of the family $(x_i)_{i \in I}$. If the support $\text{supp}(a)$ is empty, then we define this sum to be equal to $0 \in M$. We say that the family $(a_i)_{i \in I}$ is the zero family, if its support is empty.

DEFINITION 1.10. Let R be a ring, let M a left R -module, and let $(x_i)_{i \in I}$ be a family of elements in M .

- (1) The family $(x_i)_{i \in I}$ *generates* M if every element $y \in M$ can be written as a linear combination of $(x_i)_{i \in I}$.
- (2) The family $(x_i)_{i \in I}$ is *linearly independent* if the only family $(a_i)_{i \in I}$ of elements in R such that $\sum_{i \in I} a_i x_i = 0$ is the zero family.
- (3) The family $(x_i)_{i \in I}$ is a *basis* of M if it both generates M and is linearly independent.

We say that an R -module M is *free* if it admits a basis.

EXAMPLE 1.11. (1) The left $\mathbb{Z}/6\mathbb{Z}$ -module $\mathbb{Z}/2\mathbb{Z}$ in Example 1.8 (3) is not a free module. The family $(1+2\mathbb{Z})$ generates $\mathbb{Z}/2\mathbb{Z}$ but it is not linearly independent. Indeed, $(2+6\mathbb{Z}) \cdot (1+2\mathbb{Z}) = 2+2\mathbb{Z}$ is zero in $\mathbb{Z}/2\mathbb{Z}$, but $2+6\mathbb{Z}$ is not zero in $\mathbb{Z}/6\mathbb{Z}$, so the family $(2+6\mathbb{Z})$ is not the zero family.

(2) Let M be a left R -module. The empty family $()$ is linearly independent, and the identity family $(x)_{x \in M}$ generates M . The empty family is a basis if and only $M = \{0\}$, whereas the identity family never is a basis.

Let X be a set. If $(x_i)_{i \in I}$ is a family of elements in X , and if $J \subset I$ is a subset of the indexing set of the family, then we say that the family $(x_i)_{i \in J}$ is a subfamily of the family $(x_i)_{i \in I}$. In particular, the empty family is a subfamily of every family of elements in X .

THEOREM 1.12. *Every left module over a division ring R is free. More precisely, if $(x_i)_{i \in I}$ is a family of elements in M that generates M , and if $(x_i)_{i \in K}$ is a linearly independent subfamily thereof, then there exists $K \subset J \subset I$ such that $(x_i)_{i \in J}$ is a basis of M .*

PROOF. Let S be the set that consists of all subsets $K \subset Z \subset I$ such that the subfamily $(x_i)_{i \in Z}$ is linearly independent. The set S is partially ordered under inclusion and we will use Zorn's lemma to prove that S has a maximal element. To this end, we must verify the following (i)–(ii).

- (i) The set S is non-empty.
- (ii) Every subset $T \subset S$ which is totally ordered with respect to inclusion has an upper bound in S .

We know that (i) holds, since $K \in S$. To verify (ii), we let $T \subset S$ be a totally ordered subset of S and consider $Z_T = \bigcup_{Z \in T} Z$. The family $(x_i)_{i \in Z_T}$ is linearly independent. Indeed, if

$$\sum_{i \in Z_T} a_i x_i = 0,$$

then $\text{supp}(a) \subset Z$ for some $Z \in T$, since $\text{supp}(a)$ is finite. But then

$$\sum_{i \in Z} a_i x_i = 0,$$

which, by the linear independence of $(x_i)_{i \in Z}$, implies that $(a_i)_{i \in Z_T}$ is the zero family. So $Z_T \in S$ and $Z \subset Z_T$ for all $Z \in T$, which proves (ii). By Zorn's lemma, S has a maximal element J , and since $J \in S$, the subfamily $(x_i)_{i \in J}$ is linearly independent and $K \subset J \subset I$.

It remains to show that $(x_i)_{i \in J}$ generates M . If this is not the case, then there exists $h \in I$ such that x_h is not a linear combination of $(x_i)_{i \in J}$, and we claim that, in this case, the subfamily $(x_i)_{i \in J'}$ with $J' = J \cup \{h\} \subset I$ is linearly independent. Indeed, suppose that

$$\sum_{i \in J'} a_i x_i = 0.$$

If $a_h \neq 0$, then

$$x_h = -a_h^{-1} \left(\sum_{i \in J} a_i x_i \right),$$

which contradicts that x_h is not a linear combination of $(x_i)_{i \in J}$. (This is where we use the assumption that R is a division ring.) So $a_h = 0$, and hence

$$\sum_{i \in J} a_i x_i = 0.$$

Since $(x_i)_{i \in J}$ is linearly independent, we conclude that $(a_i)_{i \in J}$ is the zero family. Therefore, also $(a_i)_{i \in J'}$ is the zero family, which shows the claim that $(x_i)_{i \in J'}$ is linearly independent. But then $J' \in S$ and $J \subset J'$, which contradicts the maximality of $J \in S$. This shows that $(x_i)_{i \in J}$ generates M , and hence, is a basis of M , as desired. \square

DEFINITION 1.13. A left module over a division ring is called a *left vector space*. A right module over a division ring is called a *right vector space*.

REMARK 1.14. Let M be a left vector space over the division ring R . One may show that if $(x_i)_{i \in I}$ is a basis of M , then the cardinality of the indexing set I depends only on M and not on the particular choice of basis. This cardinality is called the *dimension* of M . For a general ring R , two different bases of the same free left R -module M may not have indexing sets of the same cardinality.

EXERCISE 1.15. The formula

$$(a + ib + jc + kd) \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$

defines a left \mathbb{H} -vector space structure on \mathbb{R}^4 . Show that any family (\mathbf{x}) consisting of a single non-zero vector $\mathbf{x} \in \mathbb{R}^4$ is a basis of this left \mathbb{H} -vector space.