3. Semi-simple rings

We next consider semi-simple modules in more detail.

LEMMA 3.1. Let R be a ring, let M be a left R-module, and let $(S_i)_{i \in I}$ be a finite family of simple submodules, the union of which generates M. Then there exists a subset $J \subset I$ such that $M = \bigoplus_{i \in J} S_j$.

PROOF. We consider a subset $J \subset I$ which is maximal among subsets with the property that the sum of submodules $\sum_{j \in J} S_j \subset M$ is direct. Now, if $i \in I \setminus J$, then $S_i \cap \sum_{j \in J} S_j \neq \{\mathbf{0}\}$ or else J would not be maximal. Since S_i is simple, we conclude that $S_i \cap \sum_{j \in J} S_j = S_i$. It follows that $\sum_{j \in J} S_j = M$ as desired. \Box

PROPOSITION 3.2. Let R be a ring and let M be a semi-simple left R-module.

- (i) Let Q be a left R-module and let p: M → Q be a surjective R-linear map. Then Q is semi-simple and there exists an R-linear map s: Q → M such that p ∘ s: Q → Q is the identity map.
- (ii) Let N be a left R-module and let i: N → M be an injective R-linear map. Then N is semi-simple and there exists an R-linear map r: M → N such that r ∘ i: N → N is the identity map.

PROOF. (i) We write $M = \bigoplus_{i \in I} S_i$ as a finite direct sum of simple submodules. Let $J \subset I$ be the subset of indices i such that $p(S_i) \neq \{\mathbf{0}\}$. By Lemma 3.1, we can find a subset $K \subset J$ such that $\bigoplus_{i \in K} p(S_i) = Q$. Let $j: \bigoplus_{i \in K} S_i \to M$ be the canonical inclusion. Then $p \circ j$ is an isomorphism which shows that Q is semi-simple. Moreover, the composite map $s = j \circ (p \circ j)^{-1}: Q \to M$ has the desired property that $p \circ s = \mathrm{id}_Q$.

(ii) It follows from (i) that there exists a submodule $P \subset M$ such that the composition $P \to M \to M/N$ of the canonical inclusion and the canonical projection is an isomorphism. Now, if $q: M \to M/P$ is the projection onto the quotient by P, then $q \circ i: N \to M/P$ is an isomorphism. This shows that N is semi-simple and that the map $r = (q \circ i)^{-1} \circ q: M \to N$ satisfies that $r \circ i = \mathrm{id}_N$. \Box

We fix a ring R and define $\Lambda(R)$ be the set of isomorphism classes of the simple left R-modules that are of the form S = R/I with $I \subset R$ a left ideal.¹ Let S be any simple left R-module. To define the *type* of S, we choose a non-zero element $\boldsymbol{x} \in S$ and consider the R-linear map $p: R \to S$ given by $p(a) = a\boldsymbol{x}$. It is surjective, since S is simple, and hence, induces an isomorphism $\bar{p}: R/I \to S$, where $I = \operatorname{Ann}_R(\boldsymbol{x})$ is the kernel of p. We now define the type of S to be the isomorphism class $\lambda \in \Lambda(R)$ of R/I. (Exercise: Show that the type of S is well-defined.) We prove that semisimple left R-modules admit the following canonical *isotypic decomposition*.

PROPOSITION 3.3. Let R be a ring.

(i) Let M be a semi-simple left R-module, and let $M_{\lambda} \subset M$ be the submodule generated by the union of all simple submodules of type $\lambda \in \Lambda(R)$. Then

$$M = \bigoplus_{\lambda \in \Lambda(R)} M_{\lambda}$$

and M_{λ} is a direct sum of simple submodules of type λ . In addition, M_{λ} is zero for all but finitely many $\lambda \in \Lambda(R)$.

¹It is not possible, within standard ZFC set theory, to speak of the isomorphism classes of all simple *R*-modules or the set thereof. This is the reason that we define $\Lambda(R)$ in this way.

(ii) Let M and N be semi-simple left R-modules and let $f: M \to N$ be an R-linear map. Then for every $\lambda \in \Lambda(R)$, $f(M_{\lambda}) \subset N_{\lambda}$.

PROOF. We first prove (i) Since M is semi-simple, we can write M as a finite direct sum $M = \bigoplus_{i \in I} S_i$ of simple submodules. If $M'_{\lambda} = \bigoplus_{i \in I_{\lambda}} S_i$, where $I_{\lambda} \subset I$ is the subset of $i \in I$ such that S_i is of type λ , then $M = \bigoplus_{\lambda \in \Lambda(R)} M'_{\lambda}$ and $M'_{\lambda} \subset M_{\lambda}$. We must show that $M_{\lambda} \subset M'_{\lambda}$. So let $S \subset M$ be a simple submodule of type λ and let $i \in I$. The composition $f_i \colon S \to M \to S_i$ of the canonical inclusion and the canonical projection is an R-linear map, and since S and S_i are both simple left R-modules, the map f_i is either zero or an isomorphism. If it is an isomorphism, then we have $i \in I_{\lambda}$, which shows that $S \subset M'_{\lambda}$, and hence, $M_{\lambda} \subset M'_{\lambda}$ as desired. Finally, the finite set I is a the disjoint union of the subsets I_{λ} with $\lambda \in \Lambda(R)$, and hence, all but finitely many of these subsets must be empty.

Next, to prove (ii), we let $S \subset M$ be a simple submodule of type λ . Since S is simple, either $f(S) \subset N$ is zero or else $f|_S \colon S \to f(S)$ is an isomorphism of left R-modules. Therefore, $f(M_{\lambda}) \subset N_{\lambda}$ as stated. \Box

DEFINITION 3.4. A ring R is *semi-simple* if it semi-simple as a left module over itself. A ring R is *simple* if it is semi-simple and if it has exactly one type of simple modules.

We proceed to prove two theorems that, taken together, constitute a structure theorem for semi-simple rings.

THEOREM 3.5. Let R be a semi-simple ring and let $R = \bigoplus_{\lambda \in \Lambda(R)} R_{\lambda}$ be the isotypic decomposition of R as a left R-module.

- (i) For every $\lambda \in \Lambda(R)$, the left ideal $R_{\lambda} \subset R$ is non-zero. In particular, the set of types $\Lambda(R)$ is finite.
- (ii) For every $\lambda \in \Lambda(R)$, the left ideal $R_{\lambda} \subset R$ is also a right ideal.
- (iii) Let $a, b \in R$ and write $a = \sum_{\lambda \in \Lambda(R)} a_{\lambda}$ and $b = \sum_{\lambda \in \Lambda(R)} b_{\lambda}$ with $a_{\lambda}, b_{\lambda} \in R_{\lambda}$. Then $ab = \sum_{\lambda \in \Lambda(R)} a_{\lambda}b_{\lambda}$ and $a_{\lambda}b_{\lambda} \in R_{\lambda}$.
- (iv) For every $\lambda \in \Lambda(R)$, the subset $R_{\lambda} \subset R$ is a ring with respect to the restriction of the addition and multiplication on R, and the identity element is the unique element $e_{\lambda} \in R_{\lambda}$ such that $\sum_{\lambda \in \Lambda(R)} e_{\lambda} = 1$.
- (v) For every $\lambda \in \Lambda(R)$, the ring R_{λ} is simple.

PROOF. (i) Let S be a simple left R-module of type λ . We choose a non-zero element $x \in S$ and consider again the surjective R-linear map $p: R \to S$ defined by p(a) = ax. By Proposition 3.2 there exists an R-linear map $s: S \to R$ such that $p \circ s = \mathrm{id}_S$. But then $s(S) \subset R$ is a simple submodule of type λ , and hence, R_{λ} is non-zero. Finally, it follows from Proposition 3.3 (i) that $\Lambda(R)$ is a finite set.

(ii) Let $a \in R$ and let $\rho_a \colon R \to R$ be the map $\rho_a(b) = ba$ defined by right multiplication by a. It is an R-linear map from the left R-module R to itself. By Proposition 3.3 (ii), we conclude that $\rho_a(R_\lambda) \subset R_\lambda$ which is precisely the statement that $R_\lambda \subset R$ is a right ideal.

(iii) Since $R_{\mu} \subset R$ is a left ideal, we have $a_{\lambda}b_{\mu} \in R_{\mu}$, and since $R_{\lambda} \subset R$ is a right ideal, we have $a_{\lambda}b_{\mu} \in R_{\lambda}$. This shows that $a_{\lambda}b_{\mu} \in R_{\lambda} \cap R_{\mu}$, and since

$$R_{\lambda} \cap R_{\mu} = \begin{cases} R_{\lambda} & \text{if } \lambda = \mu, \\ \{\mathbf{0}\} & \text{if } \lambda \neq \mu, \end{cases}$$

the claim follows.

(iv) We have already proved in (iii) that the multiplication on R restricts to a multiplication on R_{λ} . Now, for all $a_{\lambda} \in R_{\lambda}$, we have

$$a_{\lambda} = a_{\lambda} \cdot 1 = a_{\lambda} \cdot (\sum_{\mu \in \Lambda} e_{\mu}) = \sum_{\mu \in \Lambda} a_{\lambda} \cdot e_{\mu} = a_{\lambda} \cdot e_{\lambda}$$

and the identity $a_{\lambda} = e_{\lambda} \cdot a_{\lambda}$ is proved analogously. It follows that R_{λ} is a ring and that $e_{\lambda} \in R_{\lambda}$ is its identity element.

(v) Let S_{λ} be a simple left *R*-module of type λ . Since $R_{\lambda} \subset R$, the left multiplication of *R* on S_{λ} defines a left multiplication of R_{λ} on S_{λ} . To prove that this defines a left R_{λ} -module structure on S_{λ} , we must show that $e_{\lambda} \cdot \boldsymbol{x} = \boldsymbol{x}$, for all $\boldsymbol{x} \in S_{\lambda}$. We have just proved that $e_{\lambda} \cdot \boldsymbol{y} = \boldsymbol{y}$, for all $\boldsymbol{y} \in R_{\lambda}$. Moreover, by Proposition 3.3 (i), we can find an injective *R*-linear map $f_{\lambda} : S_{\lambda} \to R_{\lambda}$. Since

$$f_{\lambda}(e_{\lambda} \cdot x) = e_{\lambda} \cdot f_{\lambda}(x) = f_{\lambda}(x),$$

we conclude that $e_{\lambda} \cdot \boldsymbol{x} = \boldsymbol{x}$, for all $\boldsymbol{x} \in S_{\lambda}$, as desired. We further note that S_{λ} is a simple left R_{λ} -module. Indeed, it follows from (iii) that a subset $N \subset S_{\lambda}$ is an R-submodule if and only if it is an R_{λ} -submodule. Finally, by Proposition 3.3 (i), the left R-module R_{λ} is a direct sum $S_{\lambda,1} \oplus \cdots \oplus S_{\lambda,r}$ of simple submodules, all of which are isomorphic to the simple left R-module S_{λ} . Therefore, also as a left R_{λ} -module, R_{λ} is the direct sum $S_{\lambda,1} \oplus \cdots \oplus S_{\lambda,r}$ of submodules, all of which are isomorphic to the simple left R_{λ} -module S_{λ} . This shows that R_{λ} is a semi-simple ring, and we conclude from (i) that every simple left R_{λ} -module is isomorphic to S_{λ} . So R_{λ} is a simple ring. \Box

REMARK 3.6. The inclusion map $i_{\lambda} \colon R_{\lambda} \to R$ is not a ring homomorphism unless $R = R_{\lambda}$. Indeed, the map i_{λ} takes the identity element $e_{\lambda} \in R_{\lambda}$ to the element $e_{\lambda} \in R$, which is not equal to the identity element $1 \in R$, unless $R = R_{\lambda}$. However, the projection map

$$p_{\lambda} \colon R \to R_{\lambda}$$

that takes $a = \sum_{\mu \in \Lambda} a_{\mu}$ with $a_{\mu} \in R_{\mu}$ to a_{λ} is a ring homomorphism. In general, the *product ring* of the family of rings $(R_{\lambda})_{\lambda \in \Lambda}$ is the defined to be the set

$$\prod_{\lambda \in \Lambda} R_{\lambda} = \{ (a_{\lambda})_{\lambda \in \Lambda} \mid a_{\lambda} \in R_{\lambda} \}$$

with componentwise addition and multiplication. The identity element in the product ring is the tuple $(e_{\lambda})_{\lambda \in \Lambda}$, where $e_{\lambda} \in R_{\lambda}$ is the identity element. We may now restate Theorem 3.5 (ii)–(v) as saying that the map

$$p\colon R\to \prod_{\lambda\in\Lambda(R)}R_{\lambda}$$

defined by $p(a) = (p_{\lambda}(a))_{\lambda \in \Lambda}$ is an isomorphism of rings, and that each of the component rings R_{λ} is a simple ring.

THEOREM 3.7. The following statements holds.

(i) Let D be a division ring and let $R = M_n(D)$ be the ring of $n \times n$ -matrices. Then R is a simple ring with the left R-module $S = M_{n,1}(D)$ of column n-vectors as its simple module, and the map

$$\rho \colon D \to \operatorname{End}_R(S)^{\operatorname{op}}$$

defined by $\rho(a)(\mathbf{x}) = \mathbf{x}a$ is a ring isomorphism.

(ii) Let R be a simple ring and let S be a simple left R-module. Then S is a finite dimensional right vector space over the division ring $D = \operatorname{End}_R(S)^{\operatorname{op}}$ opposite of the ring of R-linear endomorphisms of S, and the map

$$\lambda \colon R \to \operatorname{End}_D(S)$$

defined by $\lambda(a)(\mathbf{x}) = a\mathbf{x}$ is a ring isomorphism.

Here, in (ii), the ring $\operatorname{End}_R(S)^{\operatorname{op}}$ is a division ring by Schur's lemma, which we proved last time.

PROOF. (i) We have proved in Lemma 2.12 that S is a simple R-module. Now, let $\mathbf{e}_i \in M_{1,n}(D)$ be the row vector whose *i*th entry is 1 and whose remaining entries are 0. Then the map $f: S \oplus \cdots \oplus S \to R$, where there are n summands S, defined by $f(\mathbf{v}_1, \ldots, \mathbf{v}_n) = \mathbf{v}_1 \mathbf{e}_1 + \cdots + \mathbf{v}_n \mathbf{e}_n$ is an isomorphism of left R-modules. Indeed, in the $n \times n$ -matrix $\mathbf{v}_i \mathbf{e}_i$, the *i*th column is \mathbf{v}_i and the remaining columns are zero. This shows that R is a semi-simple ring. By Theorem 3.5 (i), we conclude that every simple left R-module is isomorphic to S. Hence, the ring R is simple.

It is readily verified that the map ρ is a ring homomorphism. Now, the kernel of ρ is a two-sided ideal in the division ring D, and hence, is either zero or all of D. But $\rho(1) = \mathrm{id}_S$ is not zero, so the kernel is zero, and hence the map ρ is injective. It remains to show that ρ is surjective. So let $f: S \to S$ be an R-linear map. We must show that there exists $a \in D$ such that for all $\mathbf{y} \in S$, $f(\mathbf{y}) = \mathbf{y}a$. To this end, we fix a non-zero element $\mathbf{x} \in S$ and choose a matrix $P \in R$ such that $P\mathbf{x} = \mathbf{x}$ and such that $PS = \mathbf{x}D \subset S$. Since f is R-linear, we have

$$f(\boldsymbol{x}) = f(P\boldsymbol{x}) = Pf(\boldsymbol{x}) \in \boldsymbol{x}D$$

which shows that $f(\mathbf{x}) = \mathbf{x}a$ with $a \in D$. Now, given any $\mathbf{y} \in S$, we can find a matrix $A \in R$ such that $A\mathbf{x} = \mathbf{y}$. Again, since f is R-linear, we have

$$f(\boldsymbol{y}) = f(A\boldsymbol{x}) = Af(\boldsymbol{x}) = A\boldsymbol{x}a = \boldsymbol{y}a$$

as desired. This shows that ρ is surjective, and hence, an isomorphism.

(ii) Since R is a simple ring with simple left R-module S, there exists an isomorphism of left R-modules $f: S^n \to R$ from the direct sum of a finite number n of copies of S onto R. We now have ring isomorphisms

$$R^{\mathrm{op}} \xrightarrow{\sim} \operatorname{End}_R(R) \xrightarrow{\sim} \operatorname{End}_R(S^n) \xrightarrow{\sim} M_n(\operatorname{End}_R(S)) = M_n(D^{\mathrm{op}})$$

where the left-hand isomorphism is given by Remark 2.6, the middle isomorphism is induced by the chosen isomorphism f, and the right-hand isomorphism takes the endomorphism g to the matrix of endomorphisms (g_{ij}) with the endomorphism g_{ij} defined to be the composition $g_{ij} = p_i \circ g \circ i_j$ of the inclusion $i_j \colon S \to S^n$ of the *j*th summand, the endomorphism $g \colon S^n \to S^n$, and the projection $p_i \colon S^n \to S$ on the *i*th summand. It follows that we have a ring isomorphism

$$R \xrightarrow{\sim} M_n(D^{\mathrm{op}})^{\mathrm{op}} \xrightarrow{\sim} M_n((D^{\mathrm{op}})^{\mathrm{op}}) = M_n(D)$$

given by the composition of the isomorphism above and the isomorphism that takes the matrix A to its transpose matrix A^t . This shows that the simple ring R is isomorphic to the simple ring $M_n(D)$ we considered in (i). Therefore, it suffices to show that the map λ is an isomorphism in this case. But this is precisely the statement of Corollary 2.5, so the proof is complete. \Box

EXERCISE 3.8. Let D be a division ring, let $R = M_n(D)$, and let $S = M_{n,1}(D)$. We view S as a left R-module and as a right D-vector space.

- (1) Let $x \in S$ be a non-zero vector. Show that there exists a matrix $P \in R$ such that $PS = xD \subset S$. (Hint: Try $x = e_1$ first.)
- (2) Let $\boldsymbol{x}, \boldsymbol{y} \in S$ be non-zero vectors. Show that there exists a matrix $A \in R$ such that $A\boldsymbol{x} = \boldsymbol{y}$.

REMARK 3.9. The center of a ring R is the subring $Z(R) \subset R$ of all elements $a \in R$ with the property that for all $b \in R$, ab = ba; it is a commutative ring. The center k = Z(D) of the division ring D is a field, and it is not difficult to show that also $Z(M_n(D)) = k \cdot I_n$. It is possible for a division ring D to be of infinite dimension over the center k. However, one can show that if D is of finite dimension d over k, then $d = m^2$ is a square and every maximal subfield $E \subset D$ has dimension m over k. For example, the center of the division ring of quarternions \mathbb{H} is the field of real numbers \mathbb{R} and the complex numbers $\mathbb{C} \subset \mathbb{H}$ is a maximal subfield.

It is now high time that we see an example of a semi-simple ring. In general, if k is a commutative ring and G a group, then the group ring k[G] is defined to be the free k-module with basis G and with multiplication

$$\left(\sum_{g\in G} a_g g\right) \cdot \left(\sum_{g\in G} b_g g\right) = \sum_{g\in G} \left(\sum_{\substack{h,k\in G\\hk=g}} a_h b_k\right) g.$$

We note that $G \subset k[G]$ as the set of basis elements; the unit element $e \in G$ is also the multiplicative unit element in the ring k[G]. Moreover, the map $\eta \colon k \to k[G]$ defined by $\eta(a) = a \cdot e$ is ring homomorphism. If M is a left k[G]-module, we also say that M is a k-linear representation of the group G.

Let k be a field and let $\eta: \mathbb{Z} \to k$ be the unique ring homomorphism. We define the characteristic of k to be the unique non-negative integer char(k) such that ker(η) = char(k)Z. For example, the fields Q, R, and C have characteristic 0, while for every prime number p, the field $\mathbb{Z}/p\mathbb{Z}$ has characteristic p.

EXERCISE 3.10. Let k be a field. Show that char(k) is either zero or a prime number, and that every integer n not divisible by char(k) is invertible in k.

THEOREM 3.11 (Maschke's theorem). Let k be a field and let G be finite group, whose order is not divisible by the characteristic of k. Then the group ring k[G] is a semi-simple ring.

PROOF. We show that every left k[G]-module M of finite dimension m over k is a semi-simple left k[G]-module. The proof is by induction on m; the basic case m = 1 follows from Example 2.11, since a left k[G]-module of dimension 1 over k is simple as a left k-module, and hence, also as a left k[G]-module. So we let n > 1 and assume, inductively, that every left k[G]-module of dimension m < n over k is semi-simple. We must show that if M is a left k[G]-module of dimension m < n over k, then M is semi-simple. If M is simple, we are done. If M is not simple, there exists a non-zero proper submodule $N \subset M$. We let $i: N \to M$ be the inclusion and choose a k-linear map $\rho: M \to N$ such that $\sigma \circ i = \mathrm{id}_N$. The map ρ is not necessarily k[G]-linear. However, we claim that the map $r: M \to N$ defined by

$$r(\boldsymbol{x}) = \frac{1}{|G|} \sum_{g \in G} g\rho(g^{-1}\boldsymbol{x})$$

is k[G]-linear and satisfies $r \circ i = \mathrm{id}_N$. Indeed, r is k-linear and if $h \in G$, then

$$\begin{split} r(h\boldsymbol{x}) &= \frac{1}{|G|} \sum_{g \in G} g\rho(g^{-1}h\boldsymbol{x}) = \frac{1}{|G|} \sum_{g \in G} hh^{-1}g\rho(g^{-1}h\boldsymbol{x}) \\ &= \frac{1}{|G|} \sum_{k \in G} hk\rho(k^{-1}\boldsymbol{x}) = hr(\boldsymbol{x}) \end{split}$$

which shows that r is k[G]-linear. Moreover, we have

$$egin{aligned} &(r \circ i)(m{x}) = rac{1}{|G|} \sum_{g \in G} g
ho(g^{-1}i(m{x})) = rac{1}{|G|} \sum_{g \in G} g
ho(i(g^{-1}m{x})) \ &= rac{1}{|G|} \sum_{g \in G} g g^{-1}m{x} = m{x} \end{aligned}$$

which shows that $r \circ i = \mathrm{id}_N$. This proves the claim. Now, let P be the kernel of r. The claim shows that M is equal to the direct sum of the submodules $N, P \subset M$. But N and P both have dimension less than n over k, and hence, are semi-simple by the induction hypothesis. This shows that M is semi-simple as desired. \Box

EXAMPLE 3.12 (Cyclic groups). To illustrate the theory above, we determine the structure of the group rings $\mathbb{C}[C_n]$, $\mathbb{R}[C_n]$, and $\mathbb{Q}[C_n]$, where C_n is a cyclic group of order n. Theorem 3.11 shows that the three rings are semi-simple rings, and their structure are given by Theorems 3.5 and 3.7 once we identify the corresponding sets of types of simple modules; we proceed to do so. We choice a generator $g \in C_n$ and a primitive nth root of unity $\zeta_n \in \mathbb{C}$.

We first consider the complex group ring $\mathbb{C}[C_n]$. For every $0 \leq k < n$, we define the left $\mathbb{C}[C_n]$ -module $\mathbb{C}(\zeta_n^k)$ to be the sub- \mathbb{C} -vector space $\mathbb{C}(\zeta_n^k) \subset \mathbb{C}$ spanned by the elements ζ_n^{ki} with $0 \leq i < n$ and with the module structure defined by

$$(\sum_{i=0}^{n-1} a_i g^i) \cdot z = \sum_{i=0}^{n-1} a_i \zeta_n^{ki} z.$$

The left $\mathbb{C}[C_n]$ -module $\mathbb{C}(\zeta_n^k)$ is simple. For as a \mathbb{C} -vector space, $\mathbb{C}(\zeta_n^k) = \mathbb{C}$, and therefore has no non-trivial proper submodules. Suppose that $f: \mathbb{C}(\zeta_n^k) \to \mathbb{C}(\zeta_n^l)$ is a $\mathbb{C}[C_n]$ -linear isomorphism. Then we have

$$\zeta_n^k f(1) = f(\zeta_n^k) = f(g \cdot 1) = g \cdot f(1) = \zeta_n^l f(1),$$

where the first and third equalities follows from $\mathbb{C}[C_n]$ -linearity. Since $f(1) \neq 0$, we conclude that k = l. So the *n* simple left $\mathbb{C}[C_n]$ -modules $\mathbb{C}(\zeta_n^k)$, $0 \leq k < n$, are pairwise non-isomorphic. Therefore, Theorem 3.5 (i) implies that

$$\mathbb{C}[C_n] = \bigoplus_{k=0}^{n-1} \mathbb{C}(\zeta_n^k)$$

as a left $\mathbb{C}[C_n]$ -module.² The endomorphism ring $\operatorname{End}_{\mathbb{C}[C_n]}(\mathbb{C}(\zeta_n^k))$ is isomorphic to the field \mathbb{C} for all $0 \leq k < n$.

² This direct sum decomposition is called the discrete Fourier transform. We can think of an element of $\mathbb{C}[C_n]$ as a sampling of a signal with sampling frequency 1/n, and as its component in $\mathbb{C}(\zeta_n^k)$ as the amplitude of the signal at frequency k/n. If n is a power of 2, then the decomposition can be calculated effectively by means of the fast Fourier transform.

17

We next consider the real group ring $\mathbb{R}[C_n]$. Again, for $0 \leq k < n$, we define the left $\mathbb{R}[C_n]$ -module $\mathbb{R}(\zeta_n^k)$ to be the sub- \mathbb{R} -vector space $\mathbb{R}(\zeta_n^k) \subset \mathbb{C}$ spanned by the elements ζ_n^{ki} with $0 \leq i < n$ and with the module structure defined by

$$(\sum_{i=0}^{n-1} a_i g^i) \cdot z = \sum_{i=0}^{n-1} a_i \zeta_n^{ki} z.$$

The left $\mathbb{R}[C_n]$ -module $\mathbb{R}(\zeta_n^k)$ is simple. For if $z, z' \in \mathbb{R}(\zeta_n^k)$ are two non-zero elements, then there exists $\omega \in \mathbb{R}[C_n]$ with $\omega \cdot z = z'$. The dimension of $\mathbb{R}(\zeta_n^k)$ as an \mathbb{R} -vector space is either 1 or 2 according as $\zeta_n^k \in \mathbb{R}$ or $\zeta_n^k \notin \mathbb{R}$. Moreover, we find that the left $\mathbb{R}[C_n]$ -modules $\mathbb{R}(\zeta_n^k)$ and $\mathbb{R}(\zeta_n^l)$ are isomorphic if and only if the complex numbers ζ_n^k and ζ_n^l are conjugate. Again, from Theorem 3.5 (i), we conclude that, as a left $\mathbb{R}[C_n]$ -module,

$$\mathbb{R}[C_n] = \bigoplus_{k=0}^{\lfloor n/2 \rfloor} \mathbb{R}(\zeta_n^k).$$

Here $\lfloor x \rfloor$ is the largest integer less than or equal to x. The ring $\operatorname{End}_{\mathbb{R}[C_n]}(\mathbb{R}(\zeta_n^k))$ is isomorphic to \mathbb{R} , if k = 0 or k = n/2, and is isomorphic to \mathbb{C} , otherwise.

Finally, we consider the rational group ring $\mathbb{Q}[C_n]$. For all $0 \leq k < n$, we define the left $\mathbb{Q}[C_n]$ -module $\mathbb{Q}(\zeta_n^k)$ to be the sub- \mathbb{Q} -vector space $\mathbb{Q}(\zeta_n^k) \subset \mathbb{C}$ spanned by the elements ζ_n^{ki} with $0 \leq i < n$ and with the module structure defined by

$$(\sum_{i=0}^{n-1} a_i g^i) \cdot z = \sum_{i=0}^{n-1} a_i \zeta_n^{ki} z.$$

Again, $\mathbb{Q}(\zeta_n^k)$ is a simple left $\mathbb{Q}[C_n]$ -module, since given $z, z' \in \mathbb{Q}(\zeta_n^k)$, there exists an element $\omega \in \mathbb{Q}[C_n]$ with $\omega \cdot z = z'$. Moreover, the simple left $\mathbb{Q}[C_n]$ -modules $\mathbb{Q}(\zeta_n^k)$ and $\mathbb{Q}(\zeta_n^l)$ are isomorphic if and only if

$$\{\zeta_n^{ki} \mid 0 \leqslant i < n\} = \{\zeta_n^{li} \mid 0 \leqslant i < n\}$$

as subsets of \mathbb{C} . If this subset has d elements, then d divides n and

$$\{\zeta_n^{ki} \mid 0 \leqslant i < n\} = \{\zeta_d^i \mid 0 \leqslant i < d\}$$

with $\zeta_d \in \mathbb{C}$ a primitive *d*th root of unity. Let $\mathbb{Q}(\zeta_d) \subset \mathbb{C}$ be the left $\mathbb{Q}(\zeta_d)$ -module defined by the sub- \mathbb{Q} -vector space $\mathbb{Q}(\zeta_d) \subset \mathbb{C}$ spanned by the ζ_d^i with $0 \leq i < d$ and with the left $\mathbb{Q}[C_n]$ -module structure defined by

$$(\sum_{i=0}^{n-1} z_i g^i) \cdot z = \sum_{i=0}^{n-1} a_i \zeta_d^i z.$$

In this case, we have a $\mathbb{Q}[C_n]$ -linear isomorphism

$$f: \mathbb{Q}(\zeta_d) \to \mathbb{Q}(\zeta_n^k)$$

given by the unique \mathbb{Q} -linear map that takes ζ_d^i to ζ_n^{ki} . One may show, following Gauss, that the dimension of $\mathbb{Q}(\zeta_d)$ as a \mathbb{Q} -vector space is equal to the number $\varphi(d)$ of the integers $1 \leq i \leq d$ that are relatively prime to d. Moreover, since

$$\sum_{d|n} \varphi(d) = n$$

we conclude from Theorem 3.5 (i) that the simple left $\mathbb{Q}[C_n]$ -modules $\mathbb{Q}(\zeta_d)$ with d a divisor of n represent all types of simple left $\mathbb{Q}[C_n]$ -modules. Therefore,

$$\mathbb{Q}[C_n] = \bigoplus_{d|n} \mathbb{Q}(\zeta_d)$$

as a left $\mathbb{Q}[C_n]$ -module. We note that $\mathbb{Q}(\zeta_d) \subset \mathbb{C}$ is a subfield, the *d*th cyclotomic field over \mathbb{Q} . The endomorphism ring $\operatorname{End}_{\mathbb{Q}[C_n]}(\mathbb{Q}(\zeta_d))^{\operatorname{op}}$ is isomorphic to the field $\mathbb{Q}(\zeta_d)$ for every divisor *d* of *n*.

REMARK 3.13 (Modular representation theory). If the characteristic of the field k divides the order of the group G, then the group ring k[G] is not semi-simple, and it is a very difficult problem to understand the structure of this ring. For example, if \mathbb{F}_p is the field with p elements and \mathfrak{S}_p is the symmetric group on p letters, then the structure of the ring $\mathbb{F}_p[\mathfrak{S}_p]$ is understood only for a few primes p.