
3. Semi-simple rings

We next consider semi-simple modules in more detail.

Lemma 3.1. Let R be a ring, let M be a left R-module, and let (Si)i2I be a
finite family of simple submodules, the union of which generates M . Then there
exists a subset J ⇢ I such that M =

L
j2J Sj.

Proof. We consider a subset J ⇢ I which is maximal among subsets with the
property that the sum of submodules

P
j2J Sj ⇢ M is direct. Now, if i 2 I r J ,

then Si \
P

j2J Sj 6= {0} or else J would not be maximal. Since Si is simple, we
conclude that Si \

P
j2J Sj = Si. It follows that

P
j2J Sj = M as desired. ⇤

Proposition 3.2. Let R be a ring and let M be a semi-simple left R-module.

(i) Let Q be a left R-module and let p : M ! Q be a surjective R-linear map.
Then Q is semi-simple and there exists an R-linear map s : Q ! M such that
p � s : Q ! Q is the identity map.

(ii) Let N be a left R-module and let i : N ! M be an injective R-linear map.
Then N is semi-simple and there exists an R-linear map r : M ! N such that
r � i : N ! N is the identity map.

Proof. (i) We write M =
L

i2I Si as a finite direct sum of simple submodules.
Let J ⇢ I be the subset of indices i such that p(Si) 6= {0}. By Lemma 3.1, we
can find a subset K ⇢ J such that

L
i2K p(Si) = Q. Let j :

L
i2K Si ! M be

the canonical inclusion. Then p � j is an isomorphism which shows that Q is semi-
simple. Moreover, the composite map s = j � (p � j)�1 : Q ! M has the desired
property that p � s = idQ.

(ii) It follows from (i) that there exists a submodule P ⇢ M such that the com-
position P ! M ! M/N of the canonical inclusion and the canonical projection
is an isomorphism. Now, if q : M ! M/P is the projection onto the quotient by
P , then q � i : N ! M/P is an isomorphism. This shows that N is semi-simple and
that the map r = (q � i)�1 � q : M ! N satisfies that r � i = idN . ⇤

We fix a ring R and define ⇤(R) be the set of isomorphism classes of the simple
left R-modules that are of the form S = R/I with I ⇢ R a left ideal.1 Let S be any
simple left R-module. To define the type of S, we choose a non-zero element x 2 S
and consider the R-linear map p : R ! S given by p(a) = ax. It is surjective, since
S is simple, and hence, induces an isomorphism p̄ : R/I ! S, where I = AnnR(x) is
the kernel of p. We now define the type of S to be the isomorphism class � 2 ⇤(R)
of R/I. (Exercise: Show that the type of S is well-defined.) We prove that semi-
simple left R-modules admit the following canonical isotypic decomposition.

Proposition 3.3. Let R be a ring.

(i) Let M be a semi-simple left R-module, and let M� ⇢ M be the submodule
generated by the union of all simple submodules of type � 2 ⇤(R). Then

M =
M

�2⇤(R)

M�

and M� is a direct sum of simple submodules of type �. In addition, M� is
zero for all but finitely many � 2 ⇤(R).

1It is not possible, within standard ZFC set theory, to speak of the isomorphism classes of
all simple R-modules or the set thereof. This is the reason that we define ⇤(R) in this way.
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(ii) Let M and N be semi-simple left R-modules and let f : M ! N be an R-linear
map. Then for every � 2 ⇤(R), f(M�) ⇢ N�.

Proof. We first prove (i) Since M is semi-simple, we can write M as a finite
direct sum M =

L
i2I Si of simple submodules. If M 0

� =
L

i2I�
Si, where I� ⇢ I is

the subset of i 2 I such that Si is of type �, then M =
L

�2⇤(R) M
0
� and M 0

� ⇢ M�.
We must show that M� ⇢ M 0

�. So let S ⇢ M be a simple submodule of type �
and let i 2 I. The composition fi : S ! M ! Si of the canonical inclusion and the
canonical projection is an R-linear map, and since S and Si are both simple left
R-modules, the map fi is either zero or an isomorphism. If it is an isomorphism,
then we have i 2 I�, which shows that S ⇢ M 0

�, and hence, M� ⇢ M 0
� as desired.

Finally, the finite set I is a the disjoint union of the subsets I� with � 2 ⇤(R), and
hence, all but finitely many of these subsets must be empty.

Next, to prove (ii), we let S ⇢ M be a simple submodule of type �. Since S
is simple, either f(S) ⇢ N is zero or else f |S : S ! f(S) is an isomorphism of left
R-modules. Therefore, f(M�) ⇢ N� as stated. ⇤

Definition 3.4. A ring R is semi-simple if it semi-simple as a left module over
itself. A ring R is simple if it is semi-simple and if it has exactly one type of simple
modules.

We proceed to prove two theorems that, taken together, constitute a structure
theorem for semi-simple rings.

Theorem 3.5. Let R be a semi-simple ring and let R =
L

�2⇤(R) R� be the
isotypic decomposition of R as a left R-module.

(i) For every � 2 ⇤(R), the left ideal R� ⇢ R is non-zero. In particular, the set
of types ⇤(R) is finite.

(ii) For every � 2 ⇤(R), the left ideal R� ⇢ R is also a right ideal.
(iii) Let a, b 2 R and write a =

P
�2⇤(R) a� and b =

P
�2⇤(R) b� with a�, b� 2 R�.

Then ab =
P

�2⇤(R) a�b� and a�b� 2 R�.
(iv) For every � 2 ⇤(R), the subset R� ⇢ R is a ring with respect to the restriction

of the addition and multiplication on R, and the identity element is the unique
element e� 2 R� such that

P
�2⇤(R) e� = 1.

(v) For every � 2 ⇤(R), the ring R� is simple.

Proof. (i) Let S be a simple left R-module of type �. We choose a non-zero
element x 2 S and consider again the surjective R-linear map p : R ! S defined by
p(a) = ax. By Proposition 3.2 there exists an R-linear map s : S ! R such that
p � s = idS . But then s(S) ⇢ R is a simple submodule of type �, and hence, R� is
non-zero. Finally, it follows from Proposition 3.3 (i) that ⇤(R) is a finite set.

(ii) Let a 2 R and let ⇢a : R ! R be the map ⇢a(b) = ba defined by right
multiplication by a. It is an R-linear map from the left R-module R to itself. By
Proposition 3.3 (ii), we conclude that ⇢a(R�) ⇢ R� which is precisely the statement
that R� ⇢ R is a right ideal.

(iii) Since Rµ ⇢ R is a left ideal, we have a�bµ 2 Rµ, and since R� ⇢ R is a
right ideal, we have a�bµ 2 R�. This shows that a�bµ 2 R� \Rµ, and since

R� \Rµ =

(
R� if � = µ,

{0} if � 6= µ,
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the claim follows.
(iv) We have already proved in (iii) that the multiplication on R restricts to a

multiplication on R�. Now, for all a� 2 R�, we have

a� = a� · 1 = a� · (
X

µ2⇤

eµ) =
X

µ2⇤

a� · eµ = a� · e�

and the identity a� = e� · a� is proved analogously. It follows that R� is a ring and
that e� 2 R� is its identity element.

(v) Let S� be a simple left R-module of type �. Since R� ⇢ R, the left
multiplication of R on S� defines a left multiplication of R� on S�. To prove that
this defines a left R�-module structure on S�, we must show that e� · x = x, for
all x 2 S�. We have just proved that e� · y = y, for all y 2 R�. Moreover, by
Proposition 3.3 (i), we can find an injective R-linear map f� : S� ! R�. Since

f�(e� · x) = e� · f�(x) = f�(x),

we conclude that e� · x = x, for all x 2 S�, as desired. We further note that S� is
a simple left R�-module. Indeed, it follows from (iii) that a subset N ⇢ S� is an
R-submodule if and only if it is an R�-submodule. Finally, by Proposition 3.3 (i),
the left R-module R� is a direct sum S�,1 � · · · � S�,r of simple submodules, all
of which are isomorphic to the simple left R-module S�. Therefore, also as a left
R�-module, R� is the direct sum S�,1 � · · ·� S�,r of submodules, all of which are
isomorphic to the simple left R�-module S�. This shows that R� is a semi-simple
ring, and we conclude from (i) that every simple left R�-module is isomorphic to
S�. So R� is a simple ring. ⇤

Remark 3.6. The inclusion map i� : R� ! R is not a ring homomorphism
unless R = R�. Indeed, the map i� takes the identity element e� 2 R� to the
element e� 2 R, which is not equal to the identity element 1 2 R, unless R = R�.
However, the projection map

p� : R ! R�

that takes a =
P

µ2⇤ aµ with aµ 2 Rµ to a� is a ring homomorphism. In general,
the product ring of the family of rings (R�)�2⇤ is the defined to be the set

Y

�2⇤

R� = {(a�)�2⇤ | a� 2 R�}

with componentwise addition and multiplication. The identity element in the prod-
uct ring is the tuple (e�)�2⇤, where e� 2 R� is the identity element. We may now
restate Theorem 3.5 (ii)–(v) as saying that the map

p : R !
Y

�2⇤(R)

R�

defined by p(a) = (p�(a))�2⇤ is an isomorphism of rings, and that each of the
component rings R� is a simple ring.

Theorem 3.7. The following statements holds.

(i) Let D be a division ring and let R = Mn(D) be the ring of n⇥n-matrices. Then
R is a simple ring with the left R-module S = Mn,1(D) of column n-vectors as
its simple module, and the map

⇢ : D ! EndR(S)
op

defined by ⇢(a)(x) = xa is a ring isomorphism.
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(ii) Let R be a simple ring and let S be a simple left R-module. Then S is a finite
dimensional right vector space over the division ring D = EndR(S)op opposite
of the ring of R-linear endomorphisms of S, and the map

� : R ! EndD(S)

defined by �(a)(x) = ax is a ring isomorphism.

Here, in (ii), the ring EndR(S)op is a division ring by Schur’s lemma, which we
proved last time.

Proof. (i) We have proved in Lemma 2.12 that S is a simple R-module. Now,
let ei 2 M1,n(D) be the row vector whose ith entry is 1 and whose remaining entries
are 0. Then the map f : S � · · ·� S ! R, where there are n summands S, defined
by f(v1, . . . ,vn) = v1e1+ · · ·+vnen is an isomorphism of left R-modules. Indeed,
in the n⇥n-matrix viei, the ith column is vi and the remaining columns are zero.
This shows that R is a semi-simple ring. By Theorem 3.5 (i), we conclude that
every simple left R-module is isomorphic to S. Hence, the ring R is simple.

It is readily verified that the map ⇢ is a ring homomorphism. Now, the kernel
of ⇢ is a two-sided ideal in the division ring D, and hence, is either zero or all of D.
But ⇢(1) = idS is not zero, so the kernel is zero, and hence the map ⇢ is injective.
It remains to show that ⇢ is surjective. So let f : S ! S be an R-linear map. We
must show that there exists a 2 D such that for all y 2 S, f(y) = ya. To this end,
we fix a non-zero element x 2 S and choose a matrix P 2 R such that Px = x and
such that PS = xD ⇢ S. Since f is R-linear, we have

f(x) = f(Px) = Pf(x) 2 xD

which shows that f(x) = xa with a 2 D. Now, given any y 2 S, we can find a
matrix A 2 R such that Ax = y. Again, since f is R-linear, we have

f(y) = f(Ax) = Af(x) = Axa = ya

as desired. This shows that ⇢ is surjective, and hence, an isomorphism.
(ii) Since R is a simple ring with simple left R-module S, there exists an

isomorphism of left R-modules f : Sn ! R from the direct sum of a finite number
n of copies of S onto R. We now have ring isomorphisms

Rop ⇠�! EndR(R)
⇠�! EndR(S

n)
⇠�! Mn(EndR(S)) = Mn(D

op)

where the left-hand isomorphism is given by Remark 2.6, the middle isomorphism
is induced by the chosen isomorphism f , and the right-hand isomorphism takes the
endomorphism g to the matrix of endomorphisms (gij) with the endomorphism gij
defined to be the composition gij = pi � g � ij of the inclusion ij : S ! Sn of the
jth summand, the endomorphism g : Sn ! Sn, and the projection pi : Sn ! S on
the ith summand. It follows that we have a ring isomorphism

R
⇠�! Mn(D

op)op
⇠�! Mn((D

op)op) = Mn(D)

given by the composition of the isomorphism above and the isomorphism that
takes the matrix A to its transpose matrix A t. This shows that the simple ring R
is isomorphic to the simple ring Mn(D) we considered in (i). Therefore, it su�ces
to show that the map � is an isomorphism in this case. But this is precisely the
statement of Corollary 2.5, so the proof is complete. ⇤
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Exercise 3.8. Let D be a division ring, let R = Mn(D), and let S = Mn,1(D).
We view S as a left R-module and as a right D-vector space.

(1) Let x 2 S be a non-zero vector. Show that there exists a matrix P 2 R such
that PS = xD ⇢ S. (Hint: Try x = e1 first.)

(2) Let x,y 2 S be non-zero vectors. Show that there exists a matrix A 2 R such
that Ax = y.

Remark 3.9. The center of a ring R is the subring Z(R) ⇢ R of all elements
a 2 R with the property that for all b 2 R, ab = ba; it is a commutative ring. The
center k = Z(D) of the division ring D is a field, and it is not di�cult to show
that also Z(Mn(D)) = k · In. It is possible for a division ring D to be of infinite
dimension over the center k. However, one can show that if D is of finite dimension
d over k, then d = m2 is a square and every maximal subfield E ⇢ D has dimension
m over k. For example, the center of the division ring of quarternions H is the field
of real numbers R and the complex numbers C ⇢ H is a maximal subfield.

It is now high time that we see an example of a semi-simple ring. In general, if
k is a commutative ring and G a group, then the group ring k[G] is defined to be
the free k-module with basis G and with multiplication

(
X

g2G

agg) · (
X

g2G

bgg) =
X

g2G

(
X

h,k2G
hk=g

ahbk) g.

We note that G ⇢ k[G] as the set of basis elements; the unit element e 2 G is also
the multiplicative unit element in the ring k[G]. Moreover, the map ⌘ : k ! k[G]
defined by ⌘(a) = a · e is ring homomorphism. If M is a left k[G]-module, we also
say that M is a k-linear representation of the group G.

Let k be a field and let ⌘ : Z ! k be the unique ring homomorphism. We
define the characteristic of k to be the unique non-negative integer char(k) such
that ker(⌘) = char(k)Z. For example, the fields Q, R, and C have characteristic 0,
while for every prime number p, the field Z/pZ has characteristic p.

Exercise 3.10. Let k be a field. Show that char(k) is either zero or a prime
number, and that every integer n not divisible by char(k) is invertible in k.

Theorem 3.11 (Maschke’s theorem). Let k be a field and let G be finite group,
whose order is not divisible by the characteristic of k. Then the group ring k[G] is
a semi-simple ring.

Proof. We show that every left k[G]-module M of finite dimension m over k
is a semi-simple left k[G]-module. The proof is by induction on m; the basic case
m = 1 follows from Example 2.11, since a left k[G]-module of dimension 1 over
k is simple as a left k-module, and hence, also as a left k[G]-module. So we let
n > 1 and assume, inductively, that every left k[G]-module of dimension m < n
over k is semi-simple. We must show that if M is a left k[G]-module of dimension
m = n over k, then M is semi-simple. If M is simple, we are done. If M is not
simple, there exists a non-zero proper submodule N ⇢ M . We let i : N ! M be
the inclusion and choose a k-linear map ⇢ : M ! N such that � � i = idN . The
map ⇢ is not necessarily k[G]-linear. However, we claim that the map r : M ! N
defined by

r(x) =
1

|G|
X

g2G

g⇢(g�1x)
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is k[G]-linear and satisfies r � i = idN . Indeed, r is k-linear and if h 2 G, then

r(hx) =
1

|G|
X

g2G

g⇢(g�1hx) =
1

|G|
X

g2G

hh�1g⇢(g�1hx)

=
1

|G|
X

k2G

hk⇢(k�1x) = hr(x)

which shows that r is k[G]-linear. Moreover, we have

(r � i)(x) = 1

|G|
X

g2G

g⇢(g�1i(x)) =
1

|G|
X

g2G

g⇢(i(g�1x))

=
1

|G|
X

g2G

gg�1x = x

which shows that r � i = idN . This proves the claim. Now, let P be the kernel of r.
The claim shows that M is equal to the direct sum of the submodules N,P ⇢ M .
But N and P both have dimension less than n over k, and hence, are semi-simple
by the induction hypothesis. This shows that M is semi-simple as desired. ⇤

Example 3.12 (Cyclic groups). To illustrate the theory above, we determine
the structure of the group rings C[Cn], R[Cn], and Q[Cn], where Cn is a cyclic group
of order n. Theorem 3.11 shows that the three rings are semi-simple rings, and their
structure are given by Theorems 3.5 and 3.7 once we identify the corresponding sets
of types of simple modules; we proceed to do so. We choice a generator g 2 Cn and
a primitive nth root of unity ⇣n 2 C.

We first consider the complex group ring C[Cn]. For every 0 6 k < n, we define
the left C[Cn]-module C(⇣kn) to be the sub-C-vector space C(⇣kn) ⇢ C spanned by
the elements ⇣kin with 0 6 i < n and with the module structure defined by

(
n�1X

i=0

aig
i) · z =

n�1X

i=0

ai⇣
ki
n z.

The left C[Cn]-module C(⇣kn) is simple. For as a C-vector space, C(⇣kn) = C, and
therefore has no non-trivial proper submodules. Suppose that f : C(⇣kn) ! C(⇣ln) is
a C[Cn]-linear isomorphism. Then we have

⇣knf(1) = f(⇣kn) = f(g · 1) = g · f(1) = ⇣lnf(1),

where the first and third equalities follows from C[Cn]-linearity. Since f(1) 6= 0,
we conclude that k = l. So the n simple left C[Cn]-modules C(⇣kn), 0 6 k < n, are
pairwise non-isomorphic. Therefore, Theorem 3.5 (i) implies that

C[Cn] =
n�1M

k=0

C(⇣kn)

as a left C[Cn]-module.2 The endomorphism ring EndC[Cn](C(⇣
k
n)) is isomorphic to

the field C for all 0 6 k < n.

2 This direct sum decomposition is called the discrete Fourier transform. We can think of an
element of C[Cn] as a sampling of a signal with sampling frequency 1/n, and as its component in
C(⇣kn) as the amplitude of the signal at frequency k/n. If n is a power of 2, then the decomposition
can be calculated e↵ectively by means of the fast Fourier transform.
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We next consider the real group ring R[Cn]. Again, for 0 6 k < n, we define
the left R[Cn]-module R(⇣kn) to be the sub-R-vector space R(⇣kn) ⇢ C spanned by
the elements ⇣kin with 0 6 i < n and with the module structure defined by

(
n�1X

i=0

aig
i) · z =

n�1X

i=0

ai⇣
ki
n z.

The left R[Cn]-module R(⇣kn) is simple. For if z, z0 2 R(⇣kn) are two non-zero
elements, then there exists ! 2 R[Cn] with ! · z = z0. The dimension of R(⇣kn)
as an R-vector space is either 1 or 2 according as ⇣kn 2 R or ⇣kn /2 R. Moreover,
we find that the left R[Cn]-modules R(⇣kn) and R(⇣ln) are isomorphic if and only if
the complex numbers ⇣kn and ⇣ln are conjugate. Again, from Theorem 3.5 (i), we
conclude that, as a left R[Cn]-module,

R[Cn] =

bn/2cM

k=0

R(⇣kn).

Here bxc is the largest integer less than or equal to x. The ring EndR[Cn](R(⇣
k
n)) is

isomorphic to R, if k = 0 or k = n/2, and is isomorphic to C, otherwise.
Finally, we consider the rational group ring Q[Cn]. For all 0 6 k < n, we define

the left Q[Cn]-module Q(⇣kn) to be the sub-Q-vector space Q(⇣kn) ⇢ C spanned by
the elements ⇣kin with 0 6 i < n and with the module structure defined by

(
n�1X

i=0

aig
i) · z =

n�1X

i=0

ai⇣
ki
n z.

Again, Q(⇣kn) is a simple left Q[Cn]-module, since given z, z0 2 Q(⇣kn), there exists
an element ! 2 Q[Cn] with ! · z = z0. Moreover, the simple left Q[Cn]-modules
Q(⇣kn) and Q(⇣ln) are isomorphic if and only if

{⇣kin | 0 6 i < n} = {⇣lin | 0 6 i < n}

as subsets of C. If this subset has d elements, then d divides n and

{⇣kin | 0 6 i < n} = {⇣id | 0 6 i < d}

with ⇣d 2 C a primitive dth root of unity. Let Q(⇣d) ⇢ C be the left Q(⇣d)-module
defined by the sub-Q-vector space Q(⇣d) ⇢ C spanned by the ⇣id with 0 6 i < d and
with the left Q[Cn]-module structure defined by

(
n�1X

i=0

zig
i) · z =

n�1X

i=0

ai⇣
i
dz.

In this case, we have a Q[Cn]-linear isomorphism

f : Q(⇣d) ! Q(⇣kn)

given by the unique Q-linear map that takes ⇣id to ⇣kin . One may show, following
Gauss, that the dimension of Q(⇣d) as a Q-vector space is equal to the number '(d)
of the integers 1 6 i 6 d that are relatively prime to d. Moreover, since

X

d|n

'(d) = n
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we conclude from Theorem 3.5 (i) that the simple left Q[Cn]-modules Q(⇣d) with
d a divisor of n represent all types of simple left Q[Cn]-modules. Therefore,

Q[Cn] =
M

d|n

Q(⇣d)

as a left Q[Cn]-module. We note that Q(⇣d) ⇢ C is a subfield, the dth cyclotomic
field over Q. The endomorphism ring EndQ[Cn](Q(⇣d))op is isomorphic to the field
Q(⇣d) for every divisor d of n.

Remark 3.13 (Modular representation theory). If the characteristic of the field
k divides the order of the group G, then the group ring k[G] is not semi-simple, and
it is a very di�cult problem to understand the structure of this ring. For example,
if Fp is the field with p elements and Sp is the symmetric group on p letters, then
the structure of the ring Fp[Sp] is understood only for a few primes p.


