3. Semi-simple rings

We next consider semi-simple modules in more detail.

LEMMA 3.1. Let R be a ring, let M be a left R-module, and let (S;);cr be a
finite family of simple submodules, the union of which generates M. Then there
exists a subset J C I such that M = ,c; S;-

PROOF. We consider a subset J C I which is maximal among subsets with the
property that the sum of submodules Zje] S; C M is direct. Now, if¢ € I\ J,
then S; N Y ;. ;S; # {0} or else J would not be maximal. Since 5; is simple, we
conclude that S; N, ;S5 = S;. It follows that } . ; S; = M as desired. O

PROPOSITION 3.2. Let R be a ring and let M be a semi-simple left R-module.

(i) Let Q be a left R-module and let p: M — @Q be a surjective R-linear map.
Then @ is semi-simple and there exists an R-linear map s: QQ — M such that
pos: Q — Q is the identity map.

(ii) Let N be a left R-module and let i: N — M be an injective R-linear map.
Then N is semi-simple and there exists an R-linear map r: M — N such that
roi: N — N is the identity map.

Proor. (i) We write M = @,; S; as a finite direct sum of simple submodules.
Let J C I be the subset of indices i such that p(S;) # {0}. By Lemma 3.1, we
can find a subset K C J such that @, ., p(Si) = Q. Let j: @, 5 Si — M be
the canonical inclusion. Then p o j is an isomorphism which shows that () is semi-
simple. Moreover, the composite map s = jo (poj)~!: @ — M has the desired
property that po s =idg.

(ii) It follows from (i) that there exists a submodule P C M such that the com-
position P — M — M /N of the canonical inclusion and the canonical projection
is an isomorphism. Now, if ¢: M — M/P is the projection onto the quotient by
P, then goi: N — M/P is an isomorphism. This shows that N is semi-simple and
that the map r = (goi) 1t oq: M — N satisfies that 7 o = idy. O

We fix a ring R and define A(R) be the set of isomorphism classes of the simple
left R-modules that are of the form S = R/I with I C R a left ideal.! Let S be any
simple left R-module. To define the type of S, we choose a non-zero element x € S
and consider the R-linear map p: R — S given by p(a) = ax. It is surjective, since
S is simple, and hence, induces an isomorphism p: R/I — S, where I = Anng(x) is
the kernel of p. We now define the type of S to be the isomorphism class A € A(R)
of R/I. (Exercise: Show that the type of S is well-defined.) We prove that semi-
simple left R-modules admit the following canonical isotypic decomposition.

PROPOSITION 3.3. Let R be a ring.

(i) Let M be a semi-simple left R-module, and let My C M be the submodule
generated by the union of all simple submodules of type A € A(R). Then

M = @ M,
AeA(R)

and M)y is a direct sum of simple submodules of type \. In addition, My is
zero for all but finitely many X € A(R).

11t is not possible, within standard ZFC set theory, to speak of the isomorphism classes of
all simple R-modules or the set thereof. This is the reason that we define A(R) in this way.
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(ii) Let M and N be semi-simple left R-modules and let f: M — N be an R-linear
map. Then for every A € A(R), f(My) C Ny.

PROOF. We first prove (i) Since M is semi-simple, we can write M as a finite
direct sum M = @, ; S; of simple submodules. If M} = @z’eh S;, where I, C I is
the subset of i € I such that S; is of type A, then M = @AGA(R) M7 and M; C M.
We must show that My C M. Solet S C M be a simple submodule of type A
and let ¢ € I. The composition f;: S — M — S; of the canonical inclusion and the
canonical projection is an R-linear map, and since S and S; are both simple left
R-modules, the map f; is either zero or an isomorphism. If it is an isomorphism,
then we have i € Iy, which shows that S C M}, and hence, M) C M} as desired.
Finally, the finite set I is a the disjoint union of the subsets I with A € A(R), and
hence, all but finitely many of these subsets must be empty.

Next, to prove (ii), we let S C M be a simple submodule of type A. Since S
is simple, either f(S) C N is zero or else f|g: S — f(S) is an isomorphism of left
R-modules. Therefore, f(M)) C Ny as stated. O

DEFINITION 3.4. A ring R is semi-simple if it semi-simple as a left module over
itself. A ring R is simple if it is semi-simple and if it has exactly one type of simple
modules.

We proceed to prove two theorems that, taken together, constitute a structure
theorem for semi-simple rings.

THEOREM 3.5. Let R be a semi-simple ring and let R = ®AGA(R) Ry be the
1sotypic decomposition of R as a left R-module.

(i) For every A\ € A(R), the left ideal Ry C R is non-zero. In particular, the set
of types A(R) is finite.

(ii) For every A € A(R), the left ideal Ry C R is also a right ideal.

(iii) Let a,b € R and write a = Z)\EA(R) ay and b = Z)\eA(R) by with ax,by € R,.
Then ab = erA(R) axby and axby € R,.

(iv) For every A € A(R), the subset Ry C R is a ring with respect to the restriction
of the addition and multiplication on R, and the identity element is the unique
element ey € Ry such that Z,\GA(R) ey = 1.

(v) For every A € A(R), the ring Ry is simple.

PRrROOF. (i) Let S be a simple left R-module of type A\. We choose a non-zero
element « € S and consider again the surjective R-linear map p: R — S defined by
p(a) = ax. By Proposition 3.2 there exists an R-linear map s: S — R such that
pos=idg. But then s(S) C R is a simple submodule of type A, and hence, R is
non-zero. Finally, it follows from Proposition 3.3 (i) that A(R) is a finite set.

(ii) Let @ € R and let p,: R — R be the map p,(b) = ba defined by right
multiplication by a. It is an R-linear map from the left R-module R to itself. By
Proposition 3.3 (ii), we conclude that p,(Rx) C Ry which is precisely the statement
that Ry C R is a right ideal.

(iii) Since R, C R is a left ideal, we have axb, € R, and since Ry C R is a
right ideal, we have axb, € Ry. This shows that axb, € Ry N R,, and since

R)\ if)\:/ﬁ,

Ry\NR, =
2 {{0} i) £ 1,
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the claim follows.
(iv) We have already proved in (iii) that the multiplication on R restricts to a
multiplication on Ry. Now, for all ay € Ry, we have

a,\:a,\-lzak-(Zeu):Zax-euzayex
REA BEA
and the identity a) = ey - ay is proved analogously. It follows that R is a ring and
that ey € R) is its identity element.

(v) Let Sy be a simple left R-module of type A. Since Ry C R, the left
multiplication of R on S defines a left multiplication of Ry on Sy. To prove that
this defines a left Ry-module structure on Sy, we must show that e, - = x, for
all ® € S\. We have just proved that ey -y = y, for all y € R). Moreover, by
Proposition 3.3 (i), we can find an injective R-linear map fy: Sy — Ry. Since

falex-x) =ex- fal(z) = fa(w),
we conclude that ey - @ = x, for all x € S, as desired. We further note that S is
a simple left Ry-module. Indeed, it follows from (iii) that a subset N C Sy is an
R-submodule if and only if it is an Ry-submodule. Finally, by Proposition 3.3 (i),
the left R-module Ry is a direct sum Sy @ --- @ Sy, of simple submodules, all
of which are isomorphic to the simple left R-module S). Therefore, also as a left
Ry-module, Ry is the direct sum Sy 1 @ --- @ Sy, of submodules, all of which are
isomorphic to the simple left Ry-module Sy. This shows that R is a semi-simple
ring, and we conclude from (i) that every simple left Ry-module is isomorphic to
Sy. So Ry is a simple ring. O

REMARK 3.6. The inclusion map 7): Ry — R is not a ring homomorphism
unless R = R). Indeed, the map i) takes the identity element ey € R to the
element ey € R, which is not equal to the identity element 1 € R, unless R = R).
However, the projection map

pr: R — Ry
that takes a = ZHGA a, with a, € R, to ay is a ring homomorphism. In general,

the product ring of the family of rings (R))xea is the defined to be the set
[T Bx={(a)rea [ ax € Ry}
AEA

with componentwise addition and multiplication. The identity element in the prod-
uct ring is the tuple (ex)aca, where ey € R) is the identity element. We may now
restate Theorem 3.5 (ii)—(v) as saying that the map

p:R— ][] R
AEA(R)
defined by p(a) = (px(a))rea is an isomorphism of rings, and that each of the
component rings R is a simple ring.
THEOREM 3.7. The following statements holds.

(i) Let D be a division ring and let R = M, (D) be the ring of nxn-matrices. Then
R is a simple ring with the left R-module S = My, 1(D) of column n-vectors as
its simple module, and the map

p: D — EndR(S)Op

defined by p(a)(x) = xa is a ring isomorphism.
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(ii) Let R be a simple ring and let S be a simple left R-module. Then S is a finite
dimensional right vector space over the division ring D = Endg(5)°P opposite
of the ring of R-linear endomorphisms of S, and the map

A: R — Endp(S)
defined by \a)(x) = ax is a ring isomorphism.

Here, in (ii), the ring Endr(5)°P is a division ring by Schur’s lemma, which we
proved last time.

PROOF. (i) We have proved in Lemma 2.12 that S is a simple R-module. Now,
let e; € M ,,(D) be the row vector whose ith entry is 1 and whose remaining entries
are 0. Then the map f: S&@---® S — R, where there are n summands S, defined
by f(v1,...,v,) =vie;+---+v,e, is an isomorphism of left R-modules. Indeed,
in the n X n-matrix v;e;, the ¢th column is v; and the remaining columns are zero.
This shows that R is a semi-simple ring. By Theorem 3.5 (i), we conclude that
every simple left R-module is isomorphic to S. Hence, the ring R is simple.

It is readily verified that the map p is a ring homomorphism. Now, the kernel
of p is a two-sided ideal in the division ring D, and hence, is either zero or all of D.
But p(1) = idg is not zero, so the kernel is zero, and hence the map p is injective.
It remains to show that p is surjective. So let f: S — S be an R-linear map. We
must show that there exists a € D such that for all y € S, f(y) = ya. To this end,
we fix a non-zero element & € S and choose a matrix P € R such that Px = x and
such that PS = xD C S. Since f is R-linear, we have

f(2) = f(Pz) = Pf(z) € &D

which shows that f(x) = xa with a € D. Now, given any y € S, we can find a
matrix A € R such that Ax = y. Again, since f is R-linear, we have

fy) = f(Azx) = Af(x) = Aza = ya

as desired. This shows that p is surjective, and hence, an isomorphism.

(ii) Since R is a simple ring with simple left R-module S, there exists an
isomorphism of left R-modules f: S™ — R from the direct sum of a finite number
n of copies of S onto R. We now have ring isomorphisms

R°? = Endg(R) = Endg(S™) = M, (Endg(S)) = M, (D°P)

where the left-hand isomorphism is given by Remark 2.6, the middle isomorphism
is induced by the chosen isomorphism f, and the right-hand isomorphism takes the
endomorphism g to the matrix of endomorphisms (g;;) with the endomorphism g,
defined to be the composition g;; = p; o g o 7; of the inclusion ¢;: S — S™ of the
jth summand, the endomorphism ¢g: S™ — S™, and the projection p;: S™ — S on
the 7th summand. It follows that we have a ring isomorphism

R = M, (D°?)°? = M, ((D°?)°?) = M, (D)

given by the composition of the isomorphism above and the isomorphism that
takes the matrix A to its transpose matrix A¢. This shows that the simple ring R
is isomorphic to the simple ring M, (D) we considered in (i). Therefore, it suffices
to show that the map A is an isomorphism in this case. But this is precisely the
statement of Corollary 2.5, so the proof is complete. [l
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EXERCISE 3.8. Let D be a division ring, let R = M, (D), and let S = M, 1(D).
We view S as a left R-module and as a right D-vector space.

(1) Let & € S be a non-zero vector. Show that there exists a matrix P € R such
that PS =D C S. (Hint: Try & = e; first.)

(2) Let @,y € S be non-zero vectors. Show that there exists a matrix A € R such
that Ax = y.

REMARK 3.9. The center of a ring R is the subring Z(R) C R of all elements
a € R with the property that for all b € R, ab = ba; it is a commutative ring. The
center k = Z(D) of the division ring D is a field, and it is not difficult to show
that also Z(M, (D)) = k- I,,. It is possible for a division ring D to be of infinite
dimension over the center k. However, one can show that if D is of finite dimension
d over k, then d = m? is a square and every maximal subfield £ C D has dimension
m over k. For example, the center of the division ring of quarternions H is the field
of real numbers R and the complex numbers C C H is a maximal subfield.

It is now high time that we see an example of a semi-simple ring. In general, if
k is a commutative ring and G a group, then the group ring k[G] is defined to be
the free k-module with basis G and with multiplication

(Z agg) - (Z bgg) = Z( Z anby) 9.

geG geG 9€G h,keG
hk=g
We note that G C k[G] as the set of basis elements; the unit element e € G is also
the multiplicative unit element in the ring k[G]. Moreover, the map n: k — k|G|
defined by n(a) = a - e is ring homomorphism. If M is a left k[G]-module, we also
say that M is a k-linear representation of the group G.

Let k be a field and let n: Z — k be the unique ring homomorphism. We
define the characteristic of k to be the unique non-negative integer char(k) such
that ker(n) = char(k)Z. For example, the fields Q, R, and C have characteristic 0,
while for every prime number p, the field Z/pZ has characteristic p.

EXERCISE 3.10. Let k be a field. Show that char(k) is either zero or a prime
number, and that every integer n not divisible by char(k) is invertible in k.

THEOREM 3.11 (Maschke’s theorem). Let k be a field and let G be finite group,
whose order is not divisible by the characteristic of k. Then the group ring k|G| is
a semi-simple ring.

PrROOF. We show that every left k[G]-module M of finite dimension m over k
is a semi-simple left k[G]-module. The proof is by induction on m; the basic case
m = 1 follows from Example 2.11, since a left k[G]-module of dimension 1 over
k is simple as a left k-module, and hence, also as a left k[G]-module. So we let
n > 1 and assume, inductively, that every left k[G|-module of dimension m < n
over k is semi-simple. We must show that if M is a left k[G]-module of dimension
m = n over k, then M is semi-simple. If M is simple, we are done. If M is not
simple, there exists a non-zero proper submodule N C M. We let i: N — M be
the inclusion and choose a k-linear map p: M — N such that ¢ o7 = idy. The
map p is not necessarily k[G]-linear. However, we claim that the map r: M — N
defined by

1 -1
(@) = i > gp(g ')

geqG
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is k[G]-linear and satisfies r 04 = idy. Indeed, r is k-linear and if h € G, then

—1 ~1
]G! ng h) ]G! Z hh™Ygp(g~ ha)

geG geG
% thpk: '2) = hr(x)
el &

which shows that r is k:[G]—hnear. Moreover, we have

_1 —1
TOZ gp Z JJ gp g x
( |G| 2 -G 2

geG ge€G

Zgg 'z ==a

gGG

which shows that r o7 = idy. This proves the claim. Now, let P be the kernel of r.
The claim shows that M is equal to the direct sum of the submodules N, P C M.
But N and P both have dimension less than n over k, and hence, are semi-simple
by the induction hypothesis. This shows that M is semi-simple as desired. 0

EXAMPLE 3.12 (Cyclic groups). To illustrate the theory above, we determine
the structure of the group rings C[C,,], R[C},], and Q[C,,], where C), is a cyclic group
of order n. Theorem 3.11 shows that the three rings are semi-simple rings, and their
structure are given by Theorems 3.5 and 3.7 once we identify the corresponding sets
of types of simple modules; we proceed to do so. We choice a generator g € C), and
a primitive nth root of unity ¢, € C.

We first consider the complex group ring C[C,,]. For every 0 < k < n, we define
the left C[C,,]-module C(¢*) to be the sub-C-vector space C(¢¥) C C spanned by
the elements (¥ with 0 < i < n and with the module structure defined by

n—1 n—1
O aig) 2= akz
1=0 i=0

The left C[C,,]-module C(¢*) is simple. For as a C-vector space, C(¢¥) = C, and
therefore has no non-trivial proper submodules. Suppose that f: C(¢¥) — C(¢!) is
a C[C,,]-linear isomorphism. Then we have

Gif (D) =F(C) = flg-1) =g F(1) = ¢ f(1),
where the first and third equalities follows from C[C),]-linearity. Since f(1) # 0,

we conclude that k& = [. So the n simple left C[C},]-modules C(¢¥), 0 < k < n, are
pairwise non-isomorphic. Therefore, Theorem 3.5 (i) implies that

ClC] = P Ccr)

as a left C[C\,]-module.? The endomorphism ring Endg(c, ) (C(¢F)) is isomorphic to
the field C for all 0 < k < n.

2 This direct sum decomposition is called the discrete Fourier transform. We can think of an
element of C[Cy,] as a sampling of a signal with sampling frequency 1/n, and as its component in
C(¢F) as the amplitude of the signal at frequency k/n. If n is a power of 2, then the decomposition
can be calculated effectively by means of the fast Fourier transform.
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We next consider the real group ring R[C,,]. Again, for 0 < k < n, we define
the left R[C,]-module R(¢¥) to be the sub-R-vector space R(¢*) C C spanned by
the elements (¥ with 0 <4 < n and with the module structure defined by

n—1 n—1
O aig) 2= akz
1=0 i=0

The left R[C,,]-module R(¢¥) is simple. For if 2,2’ € R(¢¥) are two non-zero
elements, then there exists w € R[C,,] with w -2z = 2/. The dimension of R((*)
as an R-vector space is either 1 or 2 according as (¥ € R or ¢¥ ¢ R. Moreover,
we find that the left R[C,,]-modules R(¢*) and R(¢!,) are isomorphic if and only if
the complex numbers (¥ and ¢! are conjugate. Again, from Theorem 3.5 (i), we
conclude that, as a left R[C),]-module,

[n/2]
R[C.] = D R(¢)).

k=0

Here |z is the largest integer less than or equal to z. The ring Endgc, ) (R(¢F)) is
isomorphic to R, if k = 0 or k = n/2, and is isomorphic to C, otherwise.

Finally, we consider the rational group ring Q[C,,]. For all 0 < k < n, we define
the left Q[C,,]-module Q(¢¥) to be the sub-Q-vector space Q(¢*) C C spanned by
the elements (¥ with 0 < i < n and with the module structure defined by

n—1 n—1
. y
O aigh) 2= aickz
i=0 =0

Again, Q(¢%) is a simple left Q[C,]-module, since given z, 2" € Q(¢¥), there exists
an element w € Q[C,] with w - z = 2/. Moreover, the simple left Q[C,,]-modules
Q(¢*) and Q(¢) are isomorphic if and only if

{Gro<i<n}={¢ |0<i<n}
as subsets of C. If this subset has d elements, then d divides n and
{¢Flo<i<n}={¢|0<i<d}

with (4 € C a primitive dth root of unity. Let Q({;) C C be the left Q({y)-module
defined by the sub-Q-vector space Q(¢;) C C spanned by the ¢} with 0 < i < d and
with the left Q[C),]-module structure defined by

n—1 . n—1 .
O zig') -2 =) aiChz.
1=0 1=0

In this case, we have a Q[C},]-linear isomorphism

f: Q) = Q¢

given by the unique Q-linear map that takes ¢} to (¥. One may show, following
Gauss, that the dimension of Q((4) as a Q-vector space is equal to the number ¢(d)
of the integers 1 < ¢ < d that are relatively prime to d. Moreover, since

> ) =n
d|n
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we conclude from Theorem 3.5 (i) that the simple left Q[C),]-modules Q((4) with
d a divisor of n represent all types of simple left Q[C),]-modules. Therefore,

Q[C.] = P Q(Ca)
d|n
as a left Q[C),]-module. We note that Q((q) C C is a subfield, the dth cyclotomic
field over Q. The endomorphism ring Endgjc,(Q(¢q))°? is isomorphic to the field
Q(¢q) for every divisor d of n.

REMARK 3.13 (Modular representation theory). If the characteristic of the field
k divides the order of the group G, then the group ring k[G] is not semi-simple, and
it is a very difficult problem to understand the structure of this ring. For example,
if IF,, is the field with p elements and &,, is the symmetric group on p letters, then
the structure of the ring I, [G,] is understood only for a few primes p.



