

Pespectives in Mathematical Sciences: Report Problems

Due: Tuesday, July 30, 2019, in Science Building 1, Room 105.

Problem 1. Let \mathbb{H} be the division ring of quaternions defined in Example 1.3 (4), and $V = (\mathbb{R}^4, +, \cdot)$ be the left \mathbb{H} -vector space with “+” given by the usual vectorsum in \mathbb{R}^4 and with scalar multiplication $\cdot : \mathbb{H} \times \mathbb{R}^4 \rightarrow \mathbb{R}^4$ given by the formula

$$(a + ib + jc + kd) \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}.$$

defines a left \mathbb{H} -vector space structure on \mathbb{R}^4 .

(a) Show that the family (\mathbf{v}) consisting of the single vector

$$\mathbf{v} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

is a linearly independent family in the left \mathbb{H} -vector space V .

(b) Show that the family (\mathbf{v}) generates the left \mathbb{H} -vector space V .
(c) Conclude that the family (\mathbf{v}) is a basis left \mathbb{H} -vector space V .

Problem 2. Let R be a ring, and let R^{op} be the opposite ring defined in Remark 2.6. Let $M_n(R)$ be the ring of $n \times n$ -matrices with entries in R , and let

$$(-)^t : M_n(R)^{\text{op}} \rightarrow M_n(R^{\text{op}})$$

be the map that to a matrix $A = (a_{ij})$ assigns its transpose $A^t = (a_{ji})$.

(a) Show that $(-)^t$ is a ring homomorphism.
(b) Show that $(-)^t$ is a ring isomorphism.

Problem 3. Let D be a division ring, and let $R = M_n(D)$ be the matrix ring. The set $S = M_{n,1}(D)$ of column vectors has both a structure of left R -module and of right D -module with sum given by matrix sum and scalar multiplication given by matrix product. Moreover, for all $A \in R$, $\mathbf{x} \in S$, and $a \in D$,

$$(A \cdot \mathbf{x}) \cdot a = A \cdot (\mathbf{x} \cdot a),$$

by the associativity of matrix product.

(a) Show that the family (\mathbf{v}) consisting of the single vector

$$\mathbf{v} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

generates the left R -module S .

(b) Show that if $n \geq 2$, then the family (\mathbf{v}) is *not* a linearly independent family in the left R -module S .
(c) Find $P \in R$ such that $P\mathbf{v} = \mathbf{v}$ and such that $PS = \mathbf{v}D \subset S$.