
REPRESENTATIONS OF THE SYMMETRIC GROUPS

Let X be a finite set with n elements, and let G = Aut(X) be its group of
automorphisms. We proceed to construct representatives for all isomorphism classes
of irreducible finite dimensional complex representations of G. Since the set of
isomorphism classes of irreducible finite dimensional complex representations is
bijective to the set of conjugacy classes of elements in G, we first introduce some
language to understand the latter set.

Usually, a partition of the set X is defined to be a family (Xi)i∈I of subsets of
Xi ⊂ X that are pairwise disjoint with union X. This definition introduces the
index set I, which causes all kinds of complications, so we will give a different
definition that avoids this problem. Let Fin be the category of finite sets, and let

Fin∧ = Fun(Finop,Set)

be the category with objects all functors F : Finop → Set and with morphisms the
natural transformations between such functors.1 We consider the functor

Fin
h // Fin∧

that to a finite set X ∈ Fin assigns the functor h(X) ∈ Fin∧ defined by

h(X)(S) = Hom(S,X)

and that to a map g : X → Y between finite sets assigns the natural transformation
h(g) : h(X)→ h(Y ), whose value at S ∈ Fin is the map

Hom(S,X) Hom(S, Y )
h(g)S

//

that takes f : S → X to g ◦ f : S → Y . The following result is very easy to prove,
but is nevertheless an extremely powerful result with myriad applications.

Lemma 1 (Yoneda lemma). For every X ∈ Fin and F ∈ Fin∧, the map

Hom(h(X), F )
ε // F (X)

that to a : h(X)→ F assigns ε(a) = aX(idX) is a bijection.

Proof. Let a : h(X) → F be a natural transformation, and let f : S → X be an
element of h(X)(S). Then the commutativity of the diagram

h(X)(X) F (X)

h(X)(S) F (S)

aX //

h(X)(f)

��

F (f)

��
aS //

shows that

aS(f) = aS(h(X)(f)(idX)) = F (f)(aX(idX)) = F (f)(ε(a)).

1Since the category Fin is large, this definition is not meaningful. However, we can replace Fin
by the equivalent small category of hereditarily finite sets to avoid this problem.
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2 REPRESENTATIONS OF THE SYMMETRIC GROUPS

Conversely, given y ∈ F (X), the same formula aS(f) = F (f)(y) defines a natural
transformation a : h(X)→ F . �

Corollary 2. For all X,Y ∈ Fin, the map

Hom(X,Y )
h // Hom(h(X), h(Y ))

is a bijection.2

Proof. Indeed, the map

Hom(h(X), h(Y ))
ε // h(Y )(X) = Hom(X,Y )

is the inverse. �

It follows that the functor h : Fin→ Fin∧ allows us to consider Fin to be a full
subcategory of Fin∧. If A ⊂ X is a subset, then h(A) ⊂ h(X) is a subfunctor in the
sense that for all S ∈ Fin, h(A)(S) ⊂ h(X)(S). In general, a subfunctor P ⊂ h(X)
is called a sieve on X. The following example shows that there are more sieves on
X and there are subsets of X.

Example 3. A partition (Xi)i∈I of X ∈ Fin in the traditional sense gives rise to the
sieve P ⊂ h(X), where P (S) ⊂ h(X)(S) = Hom(S,X) is defined to be the set of
maps f : S → X such that f(S) ⊂ Xi for some i ∈ I. The sieve P ⊂ h(X) retains
all the essential information in the partition (Xi)i∈I , but it does not remember the
index set I, which is exactly what we wanted to forget.

We will define a partition of X ∈ Fin to be a sieve P ⊂ h(X) with a property
that we now specify. We consider the set {f(S) ⊂ X | S ∈ Fin, f ∈ P (S)} to be
partially ordered under inclusion.

Definition 4. A partition of X ∈ Fin is a sieve P ⊂ h(X) for which the maximal
elements of the partially ordered set {f(S) ⊂ X | S ∈ Fin, f ∈ P (S)} are pairwise
disjoint and have union X. The set of partitions of X is denoted by Part(X).

Example 5. (i) In Example 3, the subset of {f(S) ⊂ X | S ∈ Fin, f ∈ P (S)}
consisting of the elements that are maximal with respect to the partial order given
by inclusion is precisely {Xi ⊂ X | i ∈ I}.

(ii) If (Pi)i∈I is a family of partitions of X ∈ Fin, then the sieve

(
⋂
i∈I Pi)(S) =

⋂
i∈I Pi(S) ⊂ h(X)(S)

is a partition of X, which we call the common refinement of the family (Pi)i∈I .
(iii) Inclusion of subfunctors defines a partial order � on Part(X). There is a

unique smallest element with respect to this partial order, which is given by the
partition O ⊂ h(X), where O(S) ⊂ h(X)(S) = Hom(S,X) consists of the constant
maps.

We define a left action

G = Aut(X)
µ
// Aut(Part(X))

by the formula

µ(g)(P )(S) = g(P (S)) ⊂ h(X)(S).

2 In particular, the group homomorphism G = Aut(X)
h−→ Aut(h(X)) is an isomorphism.
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As usual, we will write g · P or gP instead of µ(g)(P ). If g ∈ G, then we write
Part(X)g ⊂ Part(X) for the subset consisting of the partitions P with g · P = P .

Proposition 6. Let X ∈ Fin, let G = Aut(X), and let C(G) be the set of conjugacy
classes of elements in G. The map P : G→ Part(X) that to g ∈ G assigns

P (g) =
⋂
Q∈Part(X)g Q

induces a bijection G \P : C(G)→ G \Part(X).

Proof. We claim that P : G→ Part(X) is equivariant with respect to the left action
by G on itself through conjugation and the left action by G on Part(X) defined
above. Indeed, if g ·Q = Q, then aga−1 ·a ·Q = a ·Q, so P (aga−1) = a ·P (g). Hence,
the map P : G → Part(X) induces a map G \P : C(G) → G \Part(X) as stated.
To produce an inverse map, we let P ∈ Part(X) and choose a family (Xi)i∈I of
pairwise disjoint subsets of X such that

{Xi | i ∈ I} ⊂ {f(S) ⊂ X | S ∈ Fin, f ∈ P (S)}
is the subset of elements that are maximal with respect to inclusion. For each i ∈ I,
we further choose gi ∈ GP ⊂ G such that the subgroup Hi ⊂ GP generated by gi
acts transitively on Xi and trivially on Xj for i 6= j. In particular, for all i, j ∈ I,
the elements gi and gj commute. Hence, the element

g =
∏
i∈I gi ∈ GP ⊂ G

is well-defined, and its conjugacy class does not depend on the choices made. One
verifies that the two maps are indeed each others inverses. �

Remark 7. It is common to parametrize the set G \Part(X) by partitions of the
non-negative integer n, defined to be sequences (λ1, . . . , λk) of non-negative integers
such that λ1 ≥ · · · ≥ λk and λ1+· · ·+λk = n. If P ∈ Part(X), then the cardinalities
of the maximal elements in {f(S) ⊂ X | S ∈ Fin, f ∈ P (S)} listed in non-increasing
order is a partition (λ1, . . . , λk) of n, which only depends on the orbit of P . Con-
versely, if (λ1, . . . , λk) is a partition of n, then we choose a sequence (X1, . . . , Xk) of
pairwise disjoint subsets of X with union X and define P ⊂ h(X) as in Example 3.
The orbit through P is then independent of the choice of (X1, . . . , Xk). Note that
this parametrization of G \Part(X) is non-canonical. Indeed, we could just as well
have defined a partition of n to be a sequence (λ1, . . . , λk) with λ1 ≤ · · · ≤ λk and
λ1 + · · ·+λk = n. The number of partitions of n increases very fast with n. Indeed,
Hardy and Ramanujan have proved the asymptotic formula

card(G \Part(X)) ∼ eπ
√

2n/3

4n
√

3
.

The action by G on Part(X) is not free, and to remedy this, we introduce Young
tableaux. Recall from Example 5 (iii) the partial order � on Part(X) and the
smallest element O with respect to this partial order.

Definition 8. Let X ∈ Fin. A Young tableau of X is a pair (P, P ′) of partitions
of X such that the following hold:

(1) P ∩ P ′ = O.
(2) If (Q,Q′) is a pair of partitions of X such that Q ∩Q′ = O and such that

P � Q and P ′ � Q′, then (Q,Q′) = (P, P ′).

The set of Young tableaux on X is denoted by Tabl(X).
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We give the (finite) set Tabl(X) the diagonal left G-action defined by

g · (P, P ′) = (g · P, g · P ′),

and we call G \Tabl(X) the set of Young diagrams associated with X.

Lemma 9. Let X ∈ Fin. The left G-action on Tabl(X) is free.

Proof. Let (P, P ′) ∈ Tabl(X). For all x ∈ X, there is, up to isomorphism over X,
a unique pair of injective maps (f : S → X, f ′ : S′ → X) such that f ∈ P (S) and
f ′ ∈ P ′(S′), such that f(S) ⊂ X and f ′(S′) ⊂ X are maximal, and such that
f(S) ∩ f ′(S′) = {x}. Hence, if g ∈ G(P,P ′), then g(x) = x for all x ∈ X, and
therefore, G(P,P ′) = {e} ⊂ G. �

Corollary 10. Let X ∈ Fin, and let (P, P ′) ∈ Tabl(X). Then GP ∩GP ′ = {e}.

Proof. Indeed, we have GP ∩GP ′ = G(P,P ′). �

If (P, P ′) is a Young tableau on X, then we call P and P ′ the row partition and
the column partition, respectively, and we call the isotropy subgroups GP ⊂ G and
GP ′ ⊂ G the row stabilizer and the column stabilizer, respectively.

Proposition 11. Let X ∈ Fin. The canonical projections induce bijections

G \Part(X) G \Tabl(X)
p

oo
p′
// G \Part(X).

Proof. We leave it to the reader to turn the example sketched by the figure in
Example 12 below into a formal proof. �

Example 12. The following figure depits, in the top row, a Young tableau (P, P ′)
and its Young diagram G · (P, P ′); in the middle row, the row partition P and the
orbit G · P through it; and in the bottom row, the column partition P ′ and the
orbit G · P ′ through it.

8 12 4 9 1

11 3 10

5 6 13

7 2

8 12 4 9 1

11 3 10

5 6 13

7 2
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8 12 4 9 1

11 3 10

5 6 13

7 2

Translating to partitions of n = 13 using “matrix indexing,” we find that G · P
corresponds to λ = (5, 3, 3, 2), and that G · P ′ corresponds to λ′ = (4, 4, 3, 1, 1).

Corollary 13. Let X ∈ Fin, and let (P, P ′) and (Q,Q′) be two tableaux on X. If
P = Q, then there exists h ∈ GP such that h · P ′ = Q′, and if P ′ = Q′, then there
exists h′ ∈ GP ′ such that h′ · P = Q.

Proof. If P = Q, then p(G · (P, P ′)) = p(G · (Q,Q′)), so by Proposition 11, there
exists g ∈ G such that g · (P, P ′) = (Q,Q′). But P = Q, so g ∈ GP . �

Let Y be a Young diagram and choose a Young tableau (P, P ′) ∈ Y . We let
H = GP and K = GP ′ be the row stabilizer and column stabilizer of (P, P ′),
respectively, and consider the representations

π+
Y = (IndGH ◦ResGH)(τ)

π−Y = (IndGK ◦ResGK)(σ),

where τ is the 1-dimensional trivial representation of G and σ is the 1-dimensional
sign representation of G.

Theorem 14. Let X be a finite set, and let G = Aut(X).

(1) If Y is a Young diagram on X, then, up to isomorphism, there is a unique
irreducible finite dimensional complex representation πY of G, which occurs
in the decompositions of both π+

Y and π−Y .
(2) If Y and Z are distinct Young diagrams on X, then the representations πY

and πZ are non-isomorphic.
(3) If π is an irreducible finite dimensional complex representation of G, then

π ' πY for some Young diagram Y on X.

Proof. To prove (1), it suffices to show that

dimC Hom(π+
Y , π

−
Y ) = 1,

and to do so, we will use the results on induced representations that we proved in
the last two lectures. We consider the cartesian diagram of left G-sets

G/H ×G/K G/H

G/K G/G

q′
//

p′

��

p

��
q

//

f

((
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where we have included the map f = p◦q′ = q ◦p. We have canonical isomorphisms

Hom(π+
Y , π

−
Y ) = Hom(p∗p

∗τ, q∗q
∗σ) ' Hom(q∗p∗p

∗τ, q∗σ)

' Hom(q ! q
∗p∗p

∗τ, σ) ' Hom(q ! q
∗p !p

∗τ, σ)

' Hom(q !p
′
! q
′∗p∗τ, σ) ' Hom(f ! f

∗τ, σ)

' Hom(f∗τ, f∗σ).

Moreover, we defined a non-canonical isomorphism of left G-sets∐
1≤s≤mG/H ∩ asKa−1s

u // G/H ×G/K,

which depends on a choice of a family (a1, . . . , am) of representatives of the double
cosets H \G/K, among other things. So we conclude that

Hom(π+
Y , π

−
Y ) '

∏
1≤s≤m Hom(ResG

H∩asKa−1
s

(τ),ResG
H∩asKa−1

s
(σ)).

Since both ResGH∩aKa−1(τ) and ResGH∩aKa−1(σ) are 1-dimensional representations
of H ∩ aKa−1, we find that

dimC Hom(ResGH∩aKa−1(τ),ResGH∩aKa−1(σ))

=

{
1 if sgn(g) = 1 for all g ∈ H ∩ aKa−1,

0 otherwise.

For the double coset HaK = HK, we have

dimC Hom(ResGH∩K(τ),ResGH∩K(σ)) = 1,

since H ∩ K = {e} by Lemma 9. It remains to show that if a /∈ HK, then there
exists g ∈ H ∩ aKa−1 such that sgn(g) = −1. To this end, we consider the tableau
a(P, P ′), which has column stabilizer aKa−1. We claim that P ∩aP ′ 6= O. Granting
this, we find that there exists a row in P and a column in aP ′ that have at least
two elements in common. But then the transposition g that interchanges these two
elements belongs to H ∩ aKa−1 and has sgn(g) = −1. To prove the claim, we
assume that P ∩ aP ′ = O. This implies that (P, P ′), (P, aP ′), and (aP, aP ′) all are
tableaux, so by Corollary 13 there exists h ∈ H such that (P, aP ′) = h(P, P ′) and
k ∈ K such that (aP, aP ′) = aka−1(P, aP ′), and therefore,

a(P, P ′) = aka−1h(P, P ′).

By Lemma 9, we conclude that a = aka−1h, and hence, that a = hk ∈ HK, which
is a contradiction. This proves the claim and hence (1).

To prove (2), it suffices to show that

dimC Hom(π+
Y , π

−
Z ) = 0.

So let (P, P ′) and (Q,Q′) be tableaux in Y and Z, respectively, and let H = GP
and K = GQ′ . Arguing as in the case of (1), it suffices to show that for all a ∈ G,
there exists g ∈ H ∩ aKa−1 such that sgn(g) = −1. If this is not the case, then we
have P ∩ aQ′ = O. But then (P, P ′), (P, aQ′), and (aQ, aQ′) are all tableaux, so
by Corollary 13, there exists h ∈ H such that (P, aQ′) = h(P, P ′) and k ∈ K such
that (aQ, aQ′) = aka−1(P, aQ′), and hence,

a(Q,Q′) = aka−1h(P, P ′).

But this contradicts that Y 6= Z, so (2) follows.
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Finally, we prove (3). We have constructed the family

(πY )Y ∈G \Tabl(X)

of pairwise non-isomorphic irreducible finite dimensional complex representations of
G, and Propositions 6 and 11 show that, up to isomorphism, these are all irreducible
finite dimensional complex representations of G. �

The representation πY is called the Specht representation associated with the
Young tableau (P, P ′). The isomorphism class of πY only depends on the Young
diagram Y = G · (P, P ′).

Remark 15. We defined π+
Y = (IndGH ◦ResGH)(τ) and π−Y = (IndGK ResGK)(σ), but we

could of course just as well have switched τ and σ in this definition. Indeed, some
authors (of course) make this other choice.

If Y = G · (P, P ′) is a Young diagram on X, then Y ′ = G · (P ′, P ) is again
a Young diagram on X. We call Y ′ the conjugate Young diagram of the Young
diagram Y .

Lemma 16. Let Y be a Young diagram on X, and let Y ′ be the conjugate Young
diagram on X. Then the associated Specht representations are related by

πY ′ ' πY ⊗ σ.

Proof. Let (P, P ′) ∈ Y , and let H = GP and K = GP ′ be its row stabilizer and
column stabilizer. In this situation, we have (P ′, P ) ∈ Y ′, and

π+
Y ′ = (IndGK ◦ResGK)(τ) ' (IndGK ◦ResGK)(σ ⊗ σ)

' (IndGK ◦ResGK)(σ)⊗ σ ' π−Y ⊗ σ

π−Y ′ = (IndGH ◦ResGH)(σ) ' (IndGH ◦ResGH)(τ ⊗ σ)

' (IndGH ◦ResGH)(τ)⊗ σ ' π+
Y ⊗ σ.

Here we have used that, in general, for H ⊂ G, one has

ResGH(π ⊗ ρ) ' ResGH(π)⊗ ResGH(ρ)

IndGH(σ ⊗ ResGH(ρ)) ' IndGH(σ)⊗ ρ

for all representations π and ρ of G and σ of H. �

Example 17. For H = Σ3, we have earlier found three irreducible finite dimensional
complex representations of H, namely, the 1-dimensional trivial representation τ1
and sign representation τ2, and the 2-dimensional standard representation τ3. These
correspond to the following Specht representations:

τ1 τ2 τ3

Similarly, for G = Σ4, we have earlier found five irreducible finite dimensional
complex representations of G, namely, the 1-dimensional trivial representation π1
and sign representation π2, the 3-dimensional standard representation π3 and its
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tensor product π4 = π2 ⊗ π3 with the sign representation, and the 2-dimensional
representation π5. These correspond to the following Specht representations:

π1 π2 π3 π4 π5

Using Lemma 16, we see immediately from these listings that τ2⊗ τ3 ' τ3 and that
π2 ⊗ π5 ' π5. If we identify H with the subgroup of G consisting of all g ∈ G with
g(4) = 4, then one can also show that, in terms of Young diagrams, ResGH takes an
irreducible G-representation π to the sum with multiplicity one of all irreducible
H-representations τ corresponding to the Young diagrams obtained from the Young
diagram for π by removing one box. So we have

ResGH(π1) ' τ1
ResGH(π2) ' τ2
ResGH(π3) ' τ1 ⊕ τ3
ResGH(π4) ' τ2 ⊕ τ3
ResGH(π5) ' τ3

Similarly, one can show that IndGH takes an irreducible H-representation τ to the
sum with multiplicity one of all irreducible G-representations π corresponding to
the Young diagrams obtained from the Young diagram associated with τ by adding
one box. So we find that

IndGH(τ1) ' π1 ⊕ π3
IndGH(τ2) ' π2 ⊕ π3
IndGH(τ3) ' π3 ⊕ π4 ⊕ π5,

which is also what we have calculated directly before.

Finally, we mention that for Young diagrams Y and Z, Frobenius has given a
formula for the value χπY

(g) of the character of the Specht representation πY on
an element g in the conjugacy class corresponding to Z in terms of combinatorial
data that can be read off from the Young diagrams Y and Z directly. The formula
is called the Frobenius character formula.


