
THE CLASSICAL GROUPS

This week’s lecture will cover Chapter 7 in the book, but I will begin more
generally by defining the socalled classical (matrix) groups. These will be subgroups
of the groups GLn(R), GLn(C), and GLn(H) of invertible n×n-matrices with entries
in real numbers, complex numbers, and quaternions, respectively.

If k = (k,+, · ) is a ring, then we define the opposite ring kop = (k,+, ?) to have
the same set of elements and the same addition but the opposite multiplication

a ? b = b · a.

If k is a division ring, then so is kop.

Definition 1. Let k be a ring. A ring homomorphism

k
σ // kop

is an antiinvolution, if σ ◦ σ = id.

In particular, an antiinvolution is an isomorphism. We remark that the identity
map idk : k → k is an antiinvolution if and only if k is commutative. We will often
write a∗ or a instead of σ(a).

Example 2. (1) If k = R, then the identity map is an antiinvolution, and one can
show that it is the only one.

(2) If k = C, then the identity map and complex conjugation are antiinvolutions.

(3) If k = H, then quaternionic conjugation, which is the map σ : H → H that to
the quaternion q = a+ ib+ jc+ kd assigns the quaternion

q∗ = a− ib− jc− kd

is an antiinvolution. The identity map idH : H→ H is not an antiinvolution.

Definition 3. Let k be a division ring, and let σ : k → kop be an antiinvolution.
The adjoint matrix of A = (aij) ∈Mm,n(k) is A∗ = (a∗ji) ∈Mn,m(k).1

The number of rows in A∗ is equal to the number of columns in A and vice versa.
So it is only meaningful to ask whether A = A∗ if A is a square matrix. If k is a field
and σ : k → kop is the identity map, then it is customary to call A∗ the transpose
matrix of A and to denote it by At instead of A∗.

Proposition 4. Let k be a division ring, and let σ : k → kop be an antiinvolution.
For all matrices A, B, and C of appropriate dimensions, the following hold:

(I1) (A+B)∗ = A∗ +B∗

(I2) (AB)∗ = B∗A∗

(I3) E∗ = E
(I4) (A∗)∗ = A

1The notation A† for the adjoint matrix is also common, particularly in physics.
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2 THE CLASSICAL GROUPS

Proof. Let us prove (2). For the purpose of this proof, given A ∈Mm,n(k), we write
A∗ = (a′ij) ∈Mn,m(k). So a′ij = a∗ji by the definition of the adjoint matrix. We let
A ∈Mm,n(k) and B ∈Mn,p(k) with product C = AB ∈Mm,p(k) and calculate

c′ik = c∗ki = (

m∑
j=1

akjbji)
∗ =

m∑
j=1

(akjbji)
∗ =

m∑
j=1

b∗jia
∗
kj =

m∑
j=1

b′ija
′
jk.

This proves (2), and the remaining identities are proved analogously. �

Definition 5. Let k be a division ring, and let σ : k → kop be an antiinvolution.
A square matrix A ∈ Mn(k) is hermitian, if A∗ = A, and it is skew-hermitian, if
A∗ = −A.

If k is a field and σ : k → kop is the identity map, then it is customary to say that
A ∈Mn(k) is symmetric, if At = A, and that A is skew-symmetric, if At = −A.

We will now consider vector spaces over the division ring k, and we will always
consider right vector spaces in the sense that scalars multiply from the right.

Definition 6. Let k be a division ring, let σ : k → kop be an antiinvolution, and
let V be a right k-vector space. A hermitian form on V is a map

V × V k
〈−,−〉

//

such that the following hold for all x,y, z ∈ V and a ∈ k:

(H1) 〈x,y + z〉 = 〈x,y〉+ 〈x, z〉
(H2) 〈x,y · a〉 = 〈x,y〉 · a
(H3) 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉
(H4) 〈x · a,y〉 = a∗ · 〈x,y〉
(H5) 〈y,x〉 = 〈x,y〉∗

Example 7. Let k be a division ring, and let σ : k → kop be an antiinvolution. Let
kn = Mn,1(k) be the right k-vector space of column n-matrices with entries in k.
If A ∈ Mn(k) is a hermitian matrix, then the map 〈−,−〉 : kn × kn → k defined
by 〈x,y〉 = x∗Ay is a hermitian form. Conversely, if 〈−,−〉 : kn × kn → k is a
hermitian form, then the matrix A = (ai,j) ∈Mn(k) with entries aij = 〈ei, ej〉 is a
hermitian matrix.

If k = R, C, or H, and if σ : k → kop is the identity map, complex conjugation,
and quaternionic conjugation, respectively, then for all a ∈ k, a∗ = a if and only if
a ∈ R ⊂ k. In particular, if 〈−,−〉 is a hermitian form on a right real, complex, or
quaternionic vector space V , then for all x ∈ V , we have 〈x,x〉 ∈ R.

Definition 8. Let k = R, C, or H, and let σ : k → kop be the identity map, complex
conjugation, and quaternionic conjugation, respectively. A hermitian inner product
on a right k-vector space V is a hermitian form 〈−,−〉 : V × V → k such that, in
addition to (H1)–(H5), the following positivity property holds:

(P) For all 0 6= x ∈ V , 〈x,x〉 > 0.

Let k = R, C, or H, and let σ : k → kop be the identity map, complex conjugation,
and quaternionic conjugation, respectively. The standard hermitian inner product
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on the right k-vector space kn = Mn,1(k) of column n-vectors is defined to be the
map 〈−,−〉 : kn × kn → given by the matrix product

〈x,y〉 = x∗y,

which is meaningful, since x∗ ∈M1,n(k) and y ∈Mn,1(k).

Definition 9. Let (U, 〈−,−〉U ) and (V, 〈−,−〉V ) be right real, complex or quater-
nionic vector spaces with hermitian inner products. A k-linear map f : V → U is
an isometry with respect to the given hermitian inner products if

〈f(x), f(y)〉U = 〈x,y〉V
for all x,y ∈ V .

An isometry f : U → V is always injective, but it need not be an isomorphism.
However, if it is an isomorphism, then the inverse map f−1 : U → V is automatically
an isometry. In particular, an endomorphism f : V → V of a finite dimensional real,
complex, or quaternionic vector space that is an isometry with respect to a given
hermitian inner product is automatically an isometric isomorphism.

Definition 10. Let (U, 〈−,−〉U ) and (V, 〈−,−〉V ) be right real, complex or quater-
nionic vector spaces with hermitian inner products. Two k-linear maps f : V → U
and g : U → V are adjoint with respect to the given hermitian inner products if

〈x, f(y)〉U = 〈g(x),y〉V
for all x ∈ U and y ∈ V .

If both g : U → V and h : U → V are adjoint to f : V → U , then g = h, so if an
adjoint of f : V → U exists, then it is unique. If U and V are finite dimensional,
then an adjoint always exists.

Proposition 11. Let (U, 〈−,−〉U ) and (V, 〈−,−〉V ) be finite dimensional right
real, complex, or quaternionic vector spaces with hermitian inner products, and let
f : V → U be a linear map. Let (u1, . . . ,um) and (v1, . . . ,vn) be bases of U and V
that are orthonormal with respect to 〈−,−〉U and 〈−,−〉V , respectively.2

(1) There exists a unique linear map g : U → V that is adjoint to f : V → U
with respect to 〈−,−〉U and 〈−,−〉V .

(2) If the matrix A ∈ Mm,n(k) represents f : V → U with respect to the
given orthonormal bases, then the adjoint matrix A∗ ∈Mn,m(k) represents
g : U → V with respect to these bases.

Proof. We claim that if f : V → U and g : U → V are the linear maps represented
by A ∈ Mm,n(k) and A∗ ∈ Mn,m(k) with respect to the given orthonormal bases,
then these two maps are adjoint with respect to the given hermitian inner products.
Indeed, let u ∈ U and v ∈ V , and let x ∈ km and y ∈ kn be their coordinates with
respect to the given bases. Since the bases are orthonormal, we find

〈u, f(v)〉U = x∗Ay = x∗(A∗)∗y = (A∗x)∗y = 〈g(u),v)〉V .

This proves the proposition, since an adjoint map, if it exists, is unique. �

2This means that 〈ui,uj〉U = δij and 〈vi,vj〉V = δij .
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Lemma 12. Let k − R, C, or H, and let (U, 〈−,−〉)U and (V, 〈−,−〉V ) be right
k-vector spaces with hermitian inner product. If f : V → U and g : U → V are
adjoint with respect to 〈−,−〉U and 〈−,−〉V , then f : V → U is a linear isometry
with respect to 〈−,−〉U and 〈−,−〉V if and only if g ◦ f = idV .

Proof. We find that f : V → U is a linear isometry if and only if

〈(g ◦ f)(x),y〉V = 〈x,y〉V
for all x,y ∈ V . If g ◦ f = idV , then this is certainly true, and conversely, we find,
by setting y = (g ◦ f)(x)− x, that

〈y,y〉V = 〈(g ◦ f)(x)− x,y〉V = 〈(g ◦ f)(x),y〉V − 〈x,y〉V = 0,

which shows that g ◦ f = idV , because 〈−,−〉V is an inner product. �

Theorem 13. Let k = R, C, or H, and let (U, 〈−,−〉U ) and (V, 〈−,−〉V ) be finite
dimensional right k-vector spaces with hermitian inner products. Let f : V → U be
a linear map, and let A ∈ Mm,n(k) be the matrix that represents f : V → U with
respect to bases (u1, . . . ,um) of U and (v1, . . . ,vn) of V that are orthonormal with
respect to the given hermitian inner products. The following (1)–(3) are equivalent.

(1) The map f : V → U is a linear isometry.
(2) The matrix identity A∗A = En holds.
(3) The family (a1, . . . ,an) of vectors in km consisting of the columns of A is

orthonormal with respect to the standard hermitian inner product.

In addition, the following (4)–(6) are equivalent.

(4) The map f : V → U is an isometric isomorphism.
(5) The matrix A is invertible and A−1 = A∗.
(6) The family (a1, . . . ,an) of columns of A is basis of km that is orthonormal

with respect to the standard hermitian inner product.

Proof. By Proposition 11, the adjoint map g : U → V is represented by the adjoint
matrix A∗ ∈ Mn,m(k) with respect to the given bases, so the equilvalence of (1)
and (2) follows from Lemma 12. The (i, j)th entry in A∗A is a∗iaj , which, by
definition, is the standard hermitian inner product of ai,aj ∈ km, from which the
equivalence of (2) and (3) follows. To prove the equivalence of (4) and (5), we note
that f : V → U is an isomorphism if and only if A is invertible, in which case

A−1 = (A∗A)A−1 = A∗(AA−1) = A∗.

Finally, the equivalence of (5) and (6) uses that an n × n-matrix invertible if and
only if the family consisting of its columns is a basis of kn. �

Corollary 14. Let k = R, C, or H, and let (V, 〈−,−〉) be a finite dimensional
right k-vector space with hermitian inner product, and let (v1, . . . ,vn) be a basis of
V that is orthonormal with respect to 〈−,−〉. Let f : V → V be an endomorphism,
and let A ∈Mn(k) be the matrix that represents f : V → V with (v1, . . . ,vn).

(1) The endomorphism f : V → V is an isometry with respect to 〈−,−〉 if and
only if A∗A = En. If so, then A is invertible and A−1 = A∗.

(2) The endomorphism f : V → V is selfadjoint3 with respect to 〈−,−〉 if and
only if A∗ = A.

3This means that f : V → V and its adjoint g : V → V with respect to 〈−,−〉 are equal.
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Proof. The statement (1) follows from Theorem 13 and from the fact that a square
matrix that has a right inverse is invertible. This fact, in turn, is a consequence of
Gauss elimination. The statement (2) follows from Proposition 11. �

Remark 15. A matrix P ∈ GLn(k) such that P ∗ = P−1 is said to be orthogonal, if
k = R, unitary, if k = C, and quaternionic unitary, if k = H. A matrix A ∈Mn(k)
such that A∗ = A is said to be symmetric, if k = R, hermitian, if k = C, and
quaternionic hermitian, if k = H.

We now define the classical groups. The subgroups

O(n) = {Q ∈ GLn(R) | Q∗ = Q−1} ⊂ GLn(R)

U(n) = {U ∈ GLn(C) | U∗ = U−1} ⊂ GLn(C)

Sp(n) = {S ∈ GLn(H) | S∗ = S−1} ⊂ GLn(H)

are called the orthogonal group, the unitary group, and the compact sympletic
group. They are topological groups with respect to the subspace topology from the
metric topology on Mn(k), and they are all compact. In particular, we have

O(1) = {x ∈ GL1(R) | x∗x = 1} ⊂ GL1(R)

U(1) = {z ∈ GL1(C) | z∗z = 1} ⊂ GL1(C)

Sp(1) = {q ∈ GL1(H) | q∗q = 1} ⊂ GL1(H),

so as topological spaces, these are the unit 0-sphere S0, the unit 1-sphere S1, and
the unit 3-sphere S3, respectively. If A = Q ∈ O(n) or A = U ∈ U(n), then

det(A)∗ = det(A∗) = det(A−1) = det(A)−1

so det(Q) ∈ O(1) and det(U) ∈ U(1). The subgroups

SO(n) = {Q ∈ O(n) | det(Q) = 1} ⊂ O(n)

SU(n) = {U ∈ U(n) | det(U) = 1} ⊂ U(n)

are called the special orthogonal group and the special unitary group, respectively.
There is no useful determinant of quaternionic square matrices, because the division
ring H is noncommutative.4

We embed C in H as the subfield L ⊂ H consisting of all quaternions of the
form q = a+ ib. The subfield L ⊂ H is a maximal subfield, and if also L′ ⊂ H is a
maximal subfield, then there exists q ∈ H such that L′ = qLq−1. So every maximal
subfield of H is isomorphic to C, but the embedding of C as a maximal subfield in
H is only well-defined, up to conjugation. Left multiplication by q = z1 + jz2 ∈ H
defines an L-linear map λ(q) : H→ H, and hence, a ring homomorphism

H λ // EndL(H).

Since H is a division ring, the kernel of λ is either {0} or H, and since λ(1) = idH 6= 0,
we conclude that the kernel is {0}. Let us choose the basis (1, j) of H as a right
L-vector space. This defines a ring isomorphism

EndL(H)
µ
// M2(L)

4The best one has is the Dieudonné determinant in K1(H) = (R>0, · ).
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that to an L-linear map f : H → H assigns the matrix A = µ(f) ∈ M2(L) that
represents f : H→ H with respect to the basis (1, j). The calculation

q · 1 = (z1 + jz2) · 1 = 1 · z1 + j · z2
q · j = (z1 + jz2) · j = j · z∗1 − 1 · z∗2

shows that the composite ring homomorphism

H M2(L)
f=µ◦λ

//

takes the quaternion q = z1 + jz2 to the matrix

f(q) =

(
z1 −z∗2
z2 z∗1

)
.

A map between topological groups is an isomorphism if and only if it is both an
isomorphism of groups and a homeomorphism of topological spaces.

Proposition 16. The ring homomorphism f : H→M2(L) induces an isomorphism
of topological groups h : Sp(1)→ SU(2).

Proof. We have q∗ = (z1 + jz2)∗ = z∗1 + z∗2j
∗ = z∗1 − jz2. Therefore,

q∗q = (z∗1 − jz2)(z1 + jz2) = z∗1z1 + jz1z2 − jz2z1 + z∗2z2 = z∗1z1 + z∗2z2,

which shows that q ∈ Sp(1) if and only if f(q) ∈ SU(2). So the ring homomorphism
f : H → M2(K) restricts to a group homomorphism h : Sp(1) → SU(2), which
is continuous because f : H → M2(K) is continuous. We wish to prove that h is
both an isomorphism of groups and a homeomorphism of spaces, and to do so, it
suffices to show that h is a bijection. Indeed, the inverse map of a bijective group
homomorphism is automatically a group homomorphism, and the inverse map of
a continuous bijection from a compact space such as Sp(1) to a Hausdorff space
such as SU(2) is automatically continuous. Now, the map h is injective, because
the map f is injective, and the map h is surjective because, if

U =

(
z11 z12
z21 z22

)
∈ SU(2),

then U = f(q) with q = z11 + jz21. This completes the proof. �

Let k = R, C, or H. We define the Hilbert–Schmidt norm of A ∈Mn(k) by

‖A‖ =
√

tr(A∗A) .

It satisfies ‖A+B‖ ≤ ‖A‖+ ‖B‖ and ‖AB‖ ≤ ‖A‖‖B‖ for all A,B ∈Mn(k), so in
particular, the exponential series

exp(A) =

∞∑
n=0

An

n!

converges absolutely. If [A,B] = AB −BA = 0, then

exp(A+B) = exp(A) exp(B),
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but in general the left-hand side and the right-hand side are different.5 Hence, the
matrix exp(A) is invertible with inverse exp(−A), so we get a map

Mn(k)
exp
// GLn(k).

Locally on Mn(k), this map is a diffeomorphism. For it is a smooth map (considered
as map between open subsets of Rm) with derivative id : Mn(k) → Mn(k), so the
inverse function theorem shows that it is a diffeomorphism locally on Mn(k).

If G ⊂ GLn(k) is one of the classical groups, then we define its Lie algebra to
the be the subset g ⊂ Mn(k) consisting of all matrices A such that exp(tA) ∈ G,
for all t ∈ R. It is a real subspace of Mn(k).

Proposition 17. The Lie algebras of the classical groups are given by

o(n) = {A ∈Mn(R) | A∗ +A = 0 }
u(n) = {A ∈Mn(C) | A∗ +A = 0 }
sp(n) = {A ∈Mn(H) | A∗ +A = 0 }
so(n) = {A ∈ o(n) | tr(A) = 0 }
su(n) = {A ∈ u(n) | tr(A) = 0 }

Proof. We prove the statements for u(n) and su(n); the proofs in the remaining
cases are analogous. If A ∈ u(n), then for all t ∈ R, we have

exp(tA∗) = exp(tA)∗ = exp(tA)−1 = exp(−tA),

and since the exponential map is a local diffeomorphism, this implies that A∗ = −A.
Similarly, if A ∈ su(n), then we have in addition that for all t ∈ R,

exp(nt tr(A)) = exp(tr(tA)) = det(exp(tA)) = 1.

Since the exponential map is a local diffeomorphism, this implies that tr(A) = 0. �

Example 18. The Lie algebra sp(1) ⊂ H is the 3-dimensional real subspace of purely
imaginary quaternions. One can show that exp: sp(1)→ Sp(1) is given by

exp(v) = cos|v|+ v

|v|
sin|v|,

where |v| =
√
v∗v .

Lemma 19. Let G ⊂ GLn(k) be one of the classical groups, and let g ⊂Mn(k) be
its Lie algebra. If g ∈ G and A ∈ g, then gAg−1 ∈ g.

Proof. Indeed, for all t ∈ R, we have

exp(tgAg−1) = exp(gtAg−1) = g exp(tA)g−1,

so if exp(tA) ∈ G and g ∈ G, then also exp(tgAg−1) ∈ G. �

Definition 20. The adjoint representation of the classical group G ⊂ GLn(k) on
its Lie algebra g ⊂Mn(k) is the real representation

G
Ad // GL(g)

defined by Ad(g)(A) = gAg−1.

5The difference is given by the Baker–Campbell–Hausdorff formula.
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We consider the adjoint representation

Sp(1)
Ad // GL(sp(1))

of the compact symplectic group Sp(1) on its Lie algebra sp(1) of purely imaginary
quaternions, or equivalently, the adjoint representation

SU(2)
Ad // GL(su(2))

of the special unitary group SU(2) on its Lie algebra su(2) given by the real vector
space of complex 2 × 2-matrices that are skew-hermitian and traceless. The map
that to v ∈ sp(1) assigns |v| =

√
v∗v is a norm on the real vector space sp(1), and

it determines a real inner product 〈−,−〉 on sp(1) given by6

〈v, w〉 =
1

2
(|v + w|2 − |v|2 − |w|2).

We claim that the adjoint representation takes values in the subgroup

SO(sp(1)) ⊂ GL(sp(1))

of linear isometries with respect to 〈−,−〉 that have determinant 1. To see this, we
first note that since Ad(q)(v) = qvq−1 = qvq∗, we have

(qvq∗)∗qvq∗ = qv∗q∗qvq∗ = qv∗vq∗ = v∗v,

where the last identity holds, because v∗v is an element of the center R of H. This
shows that Ad(q) is a linear isometry with respect to 〈−,−〉. Therefore, the adjoint
representation induces a group homomorphism

Sp(1)
Ad // O(sp(1))

to the subgroup O(sp(1)) ⊂ GL(sp(1)) of linear isometric isomorphisms. It is clearly
a continuous map, and since Sp(1) is connected, its image is fully contained in one
of the two components of O(sp(1)). But Ad(1) is the identity map of sp(1), which
has determinant 1, so we conclude that Ad(q) takes values in SO(sp(1)) as claimed.

Theorem 21. The adjoint representation induces a group homomorphism

Sp(1)
Ad
// SO(sp(1))

which is surjective with kernel {±1}.

We first prove two lemmas. If V is a real vector space with norm ‖−‖, then we
write S(V ) = {v ∈ V | ‖v‖ = 1} ⊂ V for the unit sphere.

Lemma 22. If H ⊂ SO(sp(1)) is a subgroup such that the restriction to H of the
standard action by SO(sp(1)) on S(sp(1)) is transitive and such that there exists
u ∈ S(sp(1)) with SO(sp(1))u ⊂ H, then H = SO(sp(1)).

Proof. Given g ∈ SO(sp(1)), we can find h ∈ H such that h · u = g · u. But then
h−1g · u = u, so h−1g ∈ SO(sp(1))u ⊂ H, and hence, g = h · h−1g ∈ H. �

Lemma 23. For all v ∈ S(sp(1)), there exists g ∈ Sp(1) such that

Ad(g)(v) = i.

6Writing v = ib+ jc+ kd, we have |v|2 = b2 + c2 + d2.
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Proof. We will use the spectral theorem for normal operators on finite dimensional
complex vector spaces. The ring homomorphism f : H→M2(C) that we considered
above induces isomorphisms h : Sp(1) → SU(2) and h′ : sp(1) → su(2). It maps
v ∈ sp(1) to X = h′(v) ∈ su(2) with det(X) = v∗v = 1. Since the matrix X
is skew-hermitian, it is normal.7 Therefore, by the spectral theorem for normal
matrices, there exists P ∈ U(2) such that PXP−1 = diag(λ1, λ2), where λ1 and
λ2 are the eigenvalues of X. Since X is skew-hermitian and det(X) = 1, one shows
that λ1 = i and λ2 = −i. So we have P ∈ U(2) with

PXP−1 =

(
i 0
0 −i

)
= h′(i).

Since P ∈ U(2), we have det(P ) ∈ U(1), so we can choose z ∈ U(1) such that
z2 = det(P ). Then U = z−1P ∈ SU(2), and we still have UXU−1 = h′(i). Hence,
if g ∈ Sp(1) is the unique element with h(g) = U , then Ad(g)(v) = i. �

Proof of Theorem 21. We apply Lemma 22 to the subgroup H ⊂ SO(sp(1)) given
by the image of Ad: Sp(1)→ SO(sp(1)). Lemma 23 shows that H acts transitively
on S(sp(1)), and we proceed to show that for SO(sp(1))i ⊂ H. The matrix that
represents a general element of the isotropy subgroup SO(sp(1))i with respect to
the basis (i, j, k) of sp(1) has the form1 0 0

0 cos θ − sin θ
0 sin θ cos θ


for some θ ∈ R. We calculate that the matrix that represent Ad(eit) with respect
to the basis (i, j, k) of sp(1) is given by1 0 0

0 cos 2t − sin 2t
0 sin 2t cos 2t

 .

This shows that SO(sp(1))i ⊂ H, and therefore, we conclude from Lemma 22 that
H = SO(sp(1)) as stated.

Finally, if Ad(g) = id, then, in particular, Ad(g) ∈ SO(sp(1))i, so g = eit. But
if Ad(eit) = id, then eit = ±1, so ker(Ad) = {±1} as stated. �

Corollary 24. The map induced by the adjoint representation,

Sp(1)/{±1} Ad // SO(sp(1)),

is an isomorphism of topological groups.

Proof. We have not explicitly specified the topologies on these groups before, so
we do that now. We have identified both Sp(1) and SO(sp(1)) with subsets of
M2(C), and we give both the respective subspace topologies induced from the metric
topology onM2(C). Finally, we give Sp(1)/{±1} the quotient topology induced from
the topology on Sp(1). As a topological space, Sp(1)/{±1} is compact, because
Sp(1) is compact, and SO(sp(1)) is Hausdorff, because the metric topology on
M2(C) is Hausdorff. So it suffices to show that Ad is a group homomorphism and
a continuous bijection. Theorem 21 shows that it is a group isomorphism, so it

7 Indeed, X∗X = (−X)X = X(−X) = XX∗.
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only remains to show that the map Ad is continuous. By the universal property
of the quotient topology, the map Ad is continuous if and only if the map Ad is
continuous. And by the universal property of the subspace topology, the map Ad
is continuous if and only if the map

Sp(1)
Ãd // EndR(M2(C))

defined by Ãd(g)(X) = h(g)Xh(g)−1 is continuous. This, in turn, follows from the
definition of matrix multiplication and from Cramer’s formula for the inverse of a
matrix. �

If G is a topological group, then we write RepC(G) for the category, whose objects
are complex representations (V, π) of G such that π : G→ GL(V ) is continuous, and
whose morphisms are intertwining C-linear maps. Restriction along the continuous
group homomorphism Ad: Sp(1)→ SO(sp(1)) defines a functor

RepC(SO(sp(1)))
Ad∗
// RepC(Sp(1)),

and Corollary 24 shows that this functor is a fully faithful embedding and that its
essential image are the continuous complex representations (V, π) of Sp(1) with the
property that π(−1) = idV .

Another consequence of Corollary 24 is that, as a topological space, SO(3) is
homeomorphic to the real projective space P3(R). Indeed, as a topological space
Sp(1) is homeomorphic to S3, and the action of the subgroup {±1} ⊂ Sp(1) by left
multiplication is free.


