Algebra III/Introduction to Algebra III: Representation Theory

Due: Please upload solutions to NUCT by Tuesday, June 30, 2020.

Problem 1. Let k be an algebraically closed field, and let G be a finite group, whose order is not divisible by the characteristic of k. Let $H \subset G$ be a subgroup, and let (V, σ) be a finite dimensional k-linear representation of H. Given $a \in G$, we define $H^a \subset G$ be the subgroup $H^a = aHa^{-1}$, and we define (V, σ^a) to be the representation of H^a given by $\sigma^a(g) = \sigma(a^{-1}ga)$ for $g \in H^a$.

Suppose that σ is irreducible. Show that the induced representation $\operatorname{Ind}_{H}^{G}(\sigma)$ is irreducible if and only if for all $a \in G$ such that $a \notin H$,

$$\dim_k \operatorname{Hom}(\operatorname{Res}_{H\cap H^a}^H(\sigma), \operatorname{Res}_{H\cap H^a}^{H^a}(\sigma^a)) = 0.$$

[Hint: By Schur's lemma, a finite dimensional k-linear representation π of G is irreducible if and only if dim_k Hom $(\pi, \pi) = 1$.]

Problem 2. Let k be a field, let G be a finite group, and let $H \subset G$ be a subgroup. Let σ be a finite dimensional k-linear representation of H, let $\pi = \operatorname{Ind}_{H}^{G}(\tau)$ be the induced k-linear representation of G, and let $\chi_{\sigma} \colon H \to k$ and $\chi_{\pi} \colon G \to k$ be their characters. Given $g \in G$, we denote by

$$(G/H)^g = \{aH \in G/H \mid gaH = aH\} \subset G/H$$

the subset fixed by left multiplication by g. Show that

$$\chi_{\pi}(g) = \sum_{aH \in (G/H)^g} \chi_{\sigma}(a^{-1}ga).$$

Note that the summand $\chi_{\sigma}(a^{-1}ga)$ corresponding to $aH \in (G/H)^g$ only depends on aH and not on the choice of $a \in aH$, since $\chi_{\sigma} \colon H \to k$ is a class function.

[Hint: One possibility is to use that $\operatorname{Ind}_{H}^{G} = f_* \simeq p_* \circ i_*$ and that $i_* \simeq r^*$, where $r: [G \setminus (G/H)] \to BH$ is a quasi-inverse of $i: BH \to [G \setminus (G/H)]$.]