Algebra III/Introduction to Algebra III: Representation Theory

Due: Please upload solutions to NUCT by Tuesday, July 14, 2020.

Problem 1. Let $k = \mathbb{R}$ (resp. \mathbb{C} , resp. \mathbb{H}), and let $\sigma: k \to k^{\text{op}}$ be the identity map (resp. complex conjugation, resp. quaternionic conjugation). We first consider $M_n(k)$ a right k-vector space with sum given by matrix sum and with right scalar multiplication given by $(x_{ij}) \cdot a = (x_{ij} \cdot a)$. The zero vector in this vector space is given by the zero matrix O.

(i) Show that the map $\langle -, - \rangle \colon M_n(k) \times M_n(k) \to k$ defined by $\langle X, Y \rangle = \operatorname{tr}(X^*Y)$

is a hermitian inner product on $M_n(k)$.

We next consider $M_n(k)$ a real vector space by restriction of scalars along $\mathbb{R} \to k$, and we consider the norm $||X|| = \sqrt{\langle X, X \rangle}$ on this real vector space induced by the hermitian inner product in (i). We give each of the classical groups $G \subset M_n(k)^1$ the subspace topology induced by the metric topology on $M_n(k)$.

- (ii) Show that each of the classical groups $G \subset M_n(k)$ is contained in the sphere of radius \sqrt{n} centered at O.
- (iii) Show that each of the classical groups $G \subset M_n(k)$ is a closed subset of $M_n(k)$.
- (iv) Conclude that each of the classical groups G is compact.

¹ For G = O(n) or SO(n), $k = \mathbb{R}$; for G = U(n) or SU(n), $k = \mathbb{C}$, and for G = Sp(n), $k = \mathbb{H}$.