Algebra III/Introduction to Algebra III: Representation Theory

Due: Please upload solutions to NUCT by Tuesday, August 4, 2020.

Problem 1. Let $G = ((G, \mathcal{O}_G), \mu, \iota, e)$ be a Lie group, that is, a group object in the category of smooth manifolds and morphisms of smooth manifolds, and let

$$\mathfrak{g} = T(G, \mathfrak{O}_G)_e$$

be the real vector space given by the tangent space at the identity element.¹ This problem will show that the fact that the inversion ι is a morphism of smooth manifolds is a consequence of the facts that the multiplication μ is a morphism of smooth manifolds and that (G, μ, ι) is a group.

(a) Let $p_1, p_2: G \times G \to G$ be the two projections, and let $i_1, i_2: G \to G \times G$ be the maps defined by $i_1(g) = (g, e)$ and $i_2(g) = (e, g)$. Show that the diagram

$$T(G, \mathfrak{O}_G)_e \xleftarrow{dp_{1,e}} T(G \times G, \mathfrak{O}_{G \times G})_{(e,e,)} \xleftarrow{dp_{2,e}} T(G, \mathfrak{O}_G)_e$$

is a biproduct in the category of real vector spaces.²

(b) Show that the composite map

$$\mathfrak{g} \oplus \mathfrak{g} \xrightarrow{di_{1,e} + di_{2,e}} T(G \times G, \mathfrak{O}_{G \times G})_{(e,e)} \xrightarrow{d\mu_{(e,e)}} \mathfrak{g}$$

maps (v, w) to the vector space sum v + w.

Hence, to first order at $e \in G$, all group structures on (G, \mathscr{O}_G) look the same! Let

$$(G \times G, \mathfrak{O}_{G \times G}) \xrightarrow{\sigma} (G \times G, \mathfrak{O}_{G \times G})$$

be the "shearing map" defined by $\sigma(g,h) = (g,\mu(g,h))$. It is a morphism of smooth manifolds, because μ is a morphism of smooth manifolds, and it is a bijection, because (G, μ, ι) is a group.

(c) Show that the composite map

$$\mathfrak{g} \oplus \mathfrak{g} \xrightarrow{di_{1,e}+di_{2,e}} T(G \times G, \mathfrak{O}_{G \times G})_{(e,e)}$$

$$\downarrow^{d\sigma_{(e,e)}}$$

$$T(G \times G, \mathfrak{O}_{G \times G})_{(e,e)} \xrightarrow{(dp_{1,e}, dp_{2,e})} \mathfrak{g} \oplus \mathfrak{g}$$

maps (v, w) to (v, v + w), and conclude that it is an isomorphism.

(d) Show that σ is both an immersion and submersion, and conclude that it is a diffeomorphism. [Hint: Use left translation and right translation to reduce to what was proved in (c).]

This shows that $\iota = p_2 \circ \sigma^{-1} \circ i_1$ is automatically a morphism of smooth manifolds.

 $^{^1}$ The group structure on G gives rise to a structure of real Lie on $\mathfrak{g},$ but we will not need this fact here.

 $^{^2\,{\}rm If}$ you do not know what this means, then either look up the definition in MacLane's book, Categories for the Working Mathematician, or in Wikipedia.