Algebra III/Introduction to Algebra III: Representation Theory

Due: Please upload solutions to NUCT by Tuesday, May 5, 2020.

Problem 1. Let $\pi: G \to GL(V)$ be a representation, let $U \subset V$ be a π -invariant subspace, and suppose that $W_1 \subset V$ and $W_2 \subset V$ are two π -invariant complements of U. Show that $\pi_{W_1}: G \to GL(W_1)$ and $\pi_{W_2}: G \to GL(W_2)$ are isomorphic.

Problem 2. Let $G = (\mathbb{C}, +)$ be a group of complex numbers under addition, let $A \in M_n(\mathbb{C})$ be a complex $n \times n$ -matrix, and consider the representation

 $G \xrightarrow{\pi} GL(V)$

on $V = \mathbb{C}^n$ given by $\pi(s) = e^{sA}$. Suppose that the characteristic polynomial¹

$$\chi_A(t) = \det(A - tE)$$

has n distinct roots $\lambda_1, \ldots, \lambda_n$. Find all π -invariant subspaces of V.

¹The definition of the characteristic polynomial has been corrected.