Algebra III/Introduction to Algebra III: Representation Theory

Due: Please upload solutions to NUCT by Tuesday, May 12, 2020.

Problem 1. Let $\pi: G \to GL(V)$ be a unitary representation of the group G on a finite dimensional complex vector space V. Prove that for all g, the eigenvalues of the linear automorphism $\pi(g): V \to V$ have absolute value 1.

Problem 2. Let $G = \{1, \zeta, \zeta^2\}$ be a cyclic group of order 3, and let $\pi \colon G \to GL_2(\mathbb{R})$ be the representation of G on \mathbb{R}^2 defined by

$$\pi(\zeta) = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}.$$

Find an inner product on \mathbb{R}^2 that is invariant with respect to π in the sense that

$$\langle \pi(g)(x), \pi(g)(y) \rangle = \langle x, y \rangle$$

for all $g \in G$ and $x, y \in \mathbb{R}^2$.