Algebra III/Introduction to Algebra III: Representation Theory

Due: Please upload solutions to NUCT by Tuesday, June 9, 2020.

Problem 1. Let (V, π) be a finite dimensional complex representation of a finite group G, let (V^*, π^*) be the dual representation, and let $\chi_{\pi}, \chi_{\pi^*} : G \to \mathbb{C}$ be their characters.

(a) Show that for all $g \in G$, $\chi_{\pi^*}(g) = \overline{\chi_{\pi}(g)}$.

- (b) Show that $\pi \simeq \pi^*$ if and only if $\chi_{\pi} \colon G \to \mathbb{C}$ takes all its values in $\mathbb{R} \subset \mathbb{C}$.
- (c) Recall the two-sided regular representation ($\mathbb{C}[G]$, Reg) of $G \times G$ defined by

$$\operatorname{Reg}(g_1, g_2)(f)(x) = f(g_2^{-1}xg_1).$$

Show that $\operatorname{Reg} \simeq \operatorname{Reg}^*$.