Algebra III/Introduction to Algebra III: Representation Theory

Due: Please upload solutions to NUCT by Tuesday, June 16, 2020.

Problem 1. Let G be a finite group, and let \widehat{G} be the set of isomorphism classes of irreducible finite dimensional complex representations of G. For every $\sigma \in \widehat{G}$, we choose a representative $(V_{\sigma}, \pi_{\sigma})$ of the class σ . We define the Fourier transform of $f \in \mathbb{C}[G]$ to be the "function" \widehat{f} that to $\sigma \in \widehat{G}$ assigns the endomorphism

$$\widehat{f}(\sigma) = \sum_{g \in G} f(g) \pi_{\sigma}(g) \in \operatorname{End}_{\mathbb{C}}(V_{\sigma}).$$

Prove the following statements:

(a) For all $f_1, f_2 \in \mathbb{C}[G]$ and $\sigma \in \widehat{G}$,

$$\widehat{f_1 * f_2}(\sigma) = \widehat{f_1}(\sigma) \circ \widehat{f_2}(\sigma),$$

where $f_1 * f_2 \in \mathbb{C}[G]$ is the convolution product of f_1 and f_2 defined by

$$(f_1 * f_2)(g) = \sum_{hk=g} f_1(h) f_2(k).$$

Here the sum ranges over pairs $(h, k) \in G \times G$ such that hk = g.

(b) For all $f \in \mathbb{C}[G]$, the Frobenius inversion formula

$$f(g) = \frac{1}{|G|} \sum_{\sigma \in \widehat{G}} n_{\sigma} \operatorname{tr}(\pi_{\sigma}(g)^{-1} \circ \widehat{f}(\sigma))$$

holds. Here $n_{\sigma} = \dim_{\mathbb{C}}(V_{\sigma})$ and we recall that $|G| = \sum_{\sigma \in \widehat{G}} n_{\sigma}^2$.

¹ The Fourier transform \hat{f} is really not a function, but rather a section of a bundle, where the fiber of σ is $\operatorname{End}_{\mathbb{C}}(V_{\sigma})$. Also, to avoid making the choice of $(V_{\sigma}, \pi_{\sigma})$, one should work with the ∞ -category of representations instead.