Linear algebra over a general ring

Lars Hesselholt

1. Rings and modules

The notion of a module is a generalization of the familiar notion of a vector
space. The generalization consists in that the scalars used for scalar multiplication
are taken to be elements of a general ring. We first define rings.

DEFINITION 1.1. A ring is a triple (R, +, -) consisting of a set R and two maps
+: Rx R— Rand -: R x R — R that satisfy the following axioms.
(Al) For all a,b,c € R,a+ (b+c¢) = (a+b) +c
) There exists an element 0 € R such that foralla € R, a +0=a =0+a.
) For every a € R, there exists b € R such that a+b=0=10+ a.
) Foralla,b€ R,a+b=b+a.
) Forall a,b,ce R, a-(b-c)=(a-b)-c.
) There exists an element 1 € R such that foralla € R,a-1=a=1"a.
(D) For all a,b,c€ R,a-(b+c) = (a-b)+(a-c)and (a+b)-¢c = (a-c)+(b-c).
The ring (R, +, ) is called commutative if the following further axiom holds.
(P3) Foralla,be R,a-b=1b-a.

The axioms (A1)-(A4) and (P1)—(P2) express that (R, +) is an abelian group
and that (R, -) is a monoid, respectively. The axiom (D) expresses that - distributes
over +. We often suppress - and write ab instead of a -b. The zero element 0 which
exist by axiom (A2) is unique. Indeed, if both 0 and 0’ satisfy (A2), then

0'=0+0=0.
Moreover, for a given a € R, the element b € R such that a + b= 0 = b+ a which
exists by (A3) is unique. Indeed, if both b and b satisfy (A3), then
b=b+0=b+(a+¥)=(b+a)+b =0+b=1V.

We write —a instead of b for this element. Similarly, the element 1 € R which exists
by axiom (P2) is unique. We abuse notation and write R instead of (R, +,-).

(A2
(A3
(A4
(P1
(P2

EXERCISE 1.2. Let R be a ring. Show that foralla € R, a-0=0=0"-a.

ExaMPLE 1.3. (1) The ring Z of integers. It is a commutative ring.

(2) The rings Q, R, and C of rational numbers, real numbers, and complex
numbers respectively. These rings are all fields which mean that they are com-
mutative, that 1 # 0, and that for all a € R \ {0}, there exists b € R such that
ab =1 = ba. This element b is uniquely determined by a and is written a 1.
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(3) The ring Z/nZ of integers modulo n. It is a field if and only if n is a prime
number.
(4) The ring H of quaternions given by the set of formal sums

H={a+ib+jc+kd]|a,b,c,decR}
with addition + and multiplication - defined by
(a+ib+ je+ kd) + (o’ +ib + jc' + kd')
=(a+d)+ib+0)+jlc+)+k(d+d)
(a+ib+je+kd) - (a/ +ib +jc +kd)
= (aa’ = bb' —cc —dd') +i(ab + a'b+ cd’ — dc’)
+j(ac +ad'c+db —bd') + k(ad + a'd + b’ —b'c)

It is a division ring which means that 1 # 0 and that for all a € R ~\ {0}, there
exists b € R such that ab =1 = ba. A field is a commutative division ring. The
quaternions H is not a commutative ring. For instance, ij = k but ji = —k.

(5) Let R be a ring and. For every positive integer n, the set of n X n-matrices
with entries in R equipped with matrix addition and matrix multiplication forms
a ring M, (R). The multiplicative unit element 1 € M, (R) is the identity matrix
and is usually written I. The ring M, (R) is not commutative except if n = 1 and
R is commutative.

(6) The set C°(X,C) of continuous complex valued functions on a topological
space X is a commutative ring under pointwise addition and multiplication. The
multiplicative unit element 1 € C°(X, C) is the constant function with value 1 € C.

DEFINITION 1.4. Let R and S be rings. A ring homomorphism from R to S is
amap f: R — S such that the following (i)—(iii) hold.

(i) f(1)=1
(ii) For all a,b € R, f(a+b) = f(a) + f(b).
(iii) For all a,b € R, f(a-b) = f(a)- f(b).

EXERCISE 1.5. Let f: R — S be a ring homomorphism. Show that f(0) =0
and that for all a € R, f(—a) = —f(a).

ExXAMPLE 1.6. (1) For every ring R, the identity map id: R — R is a ring
homomorphism. Moreover, if f: R — S and ¢g: S — T are ring homomorphisms,
then so is the composite map go f: R — T.

(2) For every ring R, there is a unique ring homomorphism f: Z — R. We
sometimes abuse notation and write n € R for the image of n € Z.

(3) There is a ring homomorphism f: H — M, (R) defined by

a —b —c —d

. . b a —d c
fla+ib+je+ kd) = e d a —b
d —c b a

(4) The canonical inclusions of Z in Q, of Q in R, of R in C, and of C in H all
are ring homomorphims.
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DEFINITION 1.7. Let R be aring. A left R-module is a triple (M, +, -) consisting
of a set M and two maps +: M x M — M and -: R x M — M such that (M,+)
satisfy the axioms (A1)—(A4) and such that the following additional axioms hold.

(M1) Foralla,be Randz € M, a-(b-x) = (a-b)-z.

(M2) Forallae Rand z,y e M, a- (z+y) = (a-z)+ (b-y).
(M3) Foralla,be Randx € M, (a+b) -2z = (a-z)+ (b-x).
(M4) Forallz € M, 1 -z =x.

The notion of a right R-module is defined analogously.

EXAMPLE 1.8. (1) Let R be a ring. We may view R both as a left R-module
and as a right R-module via the multiplication in R.

(2) The set R™ considered as the set of “n-dimensional column vectors” is a
left M, (R)-module and considered as the set of “n-dimensional row vectors” is a
right M,,(R)-module.

(3) Let n be a positive integer, let d be a divisor in n, and define

2 ZInZL x Z)dZ — Z]dZ
by (a +nZ) - (x + dZ) = ax + dZ. This makes Z/dZ a left Z/nZ-module.

We next recall three very important notions from linear algebra. These notions
all concern families of elements. By definition, a family of elements in a set X is a
map z: I — X from some set I to X. We also write (z;);es to indicate the family
x: I — X with z(i) = x;, and we say that I is the indexing set of the family. We
remark that the families (1) and (1, 1) of elements in Z are distinct, since they have
distinct indexing sets, whereas the subsets {1} and {1,1} of Z are equal.

ExAMPLE 1.9. For every set X, there are two extreme examples of families of
elements in X, namely, the empty family ( ) with indexing set §), and the identity
family (z),ex with indexing set X.

Let R be a ring, and let (a;);cr be a family of elements in R. We call
supp(a) ={iel|a; #0} C I

for the support of the family (a;);er, and we say that the family (a;);c; has finite
support if its support supp(a) is a finite set. Let M be a left R-module, and let
(x;)icr be a family of elements in M. If (a;);er is a family of elements in R with
the same indexing set I and with finite support, then we define

E a;xr; = E Q; T;.

i€l i€supp(a)

We say that a sum of this form is a linear combination of the family (z;);ecr. If the
support supp(a) is empty, then we define this sum to be equal to 0 € M. We say
that the family (a;);es is the zero family, if its support is empty.

DEFINITION 1.10. Let R be a ring, let M a left R-module, and let (z;);c; be a
family of elements in M.

(1) The family (z;)ier generates M if every element y € M can be written as
a linear combination of (x;);e;.

(2) The family (x;);er is linearly independent if the only family (a;);er of
elements in R such that ), ; a;z; = 0 is the zero family.

(3) The family (z;);er is a basis of M if it both generates M and is linearly
independent.
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We say that an R-module M is free if it admits a basis.

EXAMPLE 1.11. (1) The left Z/6Z-module Z/27Z in Example 1.8 (3) is not a
free module. The family (1+2Z ) generates Z/2Z but it is not linearly independent.
Indeed, (24 6Z) - (14 2Z) = 2+ 27 is zero in Z/27Z, but 2+ 6Z is not zero in Z/6Z,
so the family (2 + 6Z) is not the zero family.

(2) Let M be a left R-module. The empty family ( ) is linearly independent,
and the identity family (z)yecp generates M. The empty family is a basis if and
only M = {0}, whereas the identity family never is a basis.

Let X be a set. If (z;);cr is a family of elements in X, and if J C I is a subset
of the indexing set of the family, then we say that the family (z;);cs is a subfamily
of the family (x;);es. In particular, the empty family is a subfamily of every family
of elements in X.

THEOREM 1.12. Fwvery left module over a division ring R is free. More precisely,
if (x;)icr is a family of elements in M that generates M, and if (x;)icx is a linearly
independent subfamily thereof, then there exists K C J C I such that (x;);cy is a
basis of M.

PROOF. Let S be the set that consists of all subsets K C Z C I such that
the subfamily (z;);cz is linearly independent. The set S is partially ordered under
inclusion and we will use Zorn’s lemma to prove that S has a maximal element. To
this end, we must verify the following (i)—(ii).

(i) The set S is non-empty.
(ii) Every subset T C S which is totally ordered! with respect to inclusion
has an upper bound in S.
We know that (i) holds, since K € S. To verify (ii), we let T C S be a totally
ordered subset of S and consider Zr = |J o Z. The family (2;)icz, is linearly
independent. Indeed, if
Z a;T; = O7

1€ZT
then supp(a) C Z for some Z € T, because supp(a) is finite and T is totally ordered.

But then

Z a; Ty = O,

icZ
which, by the linear independence of (x;);cz, implies that (a;)icz, is the zero
family. So Zp € S and Z C Zy for all Z € T, which proves (ii). By Zorn’s lemma,
S has a maximal element J, and since J € S, the subfamily (z;);c; is linearly
independent and K C J C I.

It remains to show that (z;);cs generates M. If this is not the case, then there
exists h € I such that xj, is not a linear combination of (z;);cs, and we claim that,
in this case, the subfamily (z;);c; with J' = JU {h} C I is linearly independent.
Indeed, suppose that

Z Q; T; — 0.

i€J’

xp = —a,:l(z a;x;),

ieJ

If aj, # 0, then

L This means that for all X,Y €T, either X CY or Y C X (or both, in which case X =Y).
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which contradicts that xj, is not a linear combination of (x;);ecs. (This is where we
use the assumption that R is a division ring.) So a, = 0, and hence

Z a; T; = 0.

ied
Since (x;);cs is linearly independent, we conclude that (a;);cs is the zero family.
Therefore, also (a;);cy is the zero family, which shows the claim that (z;);c
is linearly independent. But then J' € S and J C J', which contracticts the
maximality of J € S. This shows that (x;);cs generates M, and hence, is a basis
of M, as desired. (I

DEFINITION 1.13. A left module over a division ring is called a left vector space.
A right module over a division ring is called a right vector space.

REMARK 1.14. Let M be a left vector space over the division ring R. One
may show that if (z;);cs is a basis of M, then the cardinality of the indexing set I
depends only on M and not on the particular choice of basis. This cardinality is
called the dimension of M. For a general ring R, two different bases of the same
free left R-module M may not have indexing sets of the same cardinality.



