2. Simple modules

We first introduce the natural notion of maps between modules.

DEFINITION 2.1. Let R be a ring and let M and N be right R-modules. The
map f: N — M is called R-linear if for all z,y € N and a € R,

fle+y)=flx)+ f(y)
f(@-a)=f(z)- a.
The set of R-linear maps f: N — M is denoted by Homp (N, M).

REMARK 2.2. The set Hompg(N, M) of R-linear maps from N to M is an
abelian group with addition defined by (f + g)(x) = f(z) + g(x). If M and N are
equal, we also write Endr(M) = Hompg(M, M). It is a ring in which the product
of f and g is the composition f o g defined by (f o g)(x) = f(g(x)).

EXAMPLE 2.3. Let R be a ring and let M and N be free right R-modules with
finite bases (@1,...,¢n) and (yq,...,y,). If f: N = M is an R-linear map, then
we let A = (a;5) be the m x n-matrix, whose entries a;; € R are defined by

f(yj) =101 + X202 + -+ + Ty
In this situation, we find, for a general element y = y,s1 + -+ + y,,8, of N, that

fly) = fly)si+ -+ f(Y,)sn
= («'Elall +-- 4+ mmaml)sl + -+ (mlaln +-- wmamn)Sn

=x1(a11s1+ -+ ansn) + - F T (@mis1 + -+ CmnSn)-

Hence, if y = y;81 + -+ + y,,8n, then f(y) = x1r1 + ... Ty, where

T1 a11 a2 -+ QAln S1
T2 a21 A2 -+ d2pn 52
T'm Am1 Am?2 tee Amn Sn

We say that the matrix A represents the R-linear maps f: N — M with respect to
the bases (yq,...,y,) of N and (z1,...,x,,) of M. We note that it is important
here to consider right R-modules and not left R-modules. With left R-modules, we
would obtain “row vectors” instead of “column vectors.”

PROPOSITION 2.4. Suppose that M, N, and P are free right R-modules with
finite bases (x1,...,%m), (Y1,---,¥Yy,), and (21,...,2p), respectively. Let A be the
m X n-matriz that represents the R-linear map f: N — M with respect to the
bases (Yq,..-,Y,) of N and (x1,...,%m) of M, and let B be the n x p-matrix that
represents the R-linear map g: P — N with respect to the bases (z1,...,2p) of P
and (Yq,-.-,Y,) of N. Then the m x p-matriz C that represents the R-linear map
fog: P — M with respect to the bases (z1,...,2p) of P and (x1,...,&m) of M is

C = AB.

ProOOF. We let z = 2z1t; + - -+ + 2,t, be a general element of P, and write
g9(z) =yys1+ -+ Y, Sn, and f(g(z)) = x1r1 + - -+ + Ty By the definition of
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the matrices A and B, we have

1 aip a2 - Qip S1

r2 a21 G2 -+ Q2pn 52

m Am1  Am2 e Qmn Sn

81 bin bz - by tq

S2 bar  ba2 -+ by to

Sn bnl bn2 e bnp tp

and hence

r1 a1 a1z Qlp bir bz - by ty
T2 azi Q22 - G2n ba1 bap - b2p to
Tm Gm1 Am2 Gmn bnl bn2 e bnp tp

By the definition of the matrix C' and by the associativity of matrix product, we
conclude that C = AB as stated. O

COROLLARY 2.5. Let R be a ring and let M be a free right R-module with a
finite basis (x1,...,Ty), and let

M (R) —>— Endg (M)

be the map that to an m X m-matrix A assigns the R-linear map f: M — M
that is represented by A with respect to the basis (x1,...,&y) for both domain and
codomain. The map « is a ring isomorphism.

PrOOF. Every R-linear map f: M — M is represented with respect to the
basis (x1,...,%m,) of M by the unique m x m-matrix defined in Example 2.3.
Hence, the map « is a bijection. Moreover, the R-linear map represented by the
identity matrix I, is the identity map ids; the R-linear map represented by a sum
A + B of two matrices A and B is the sum f + g of the R-linear maps f and g
represented by the matrices A and B, respectively; and, by Proposition 2.4, the
R-linear map represented by the matrix product A - B is the composition f o g of
the R-linear maps f and g. This shows that « is a ring homomorphism, and hence,
a ring isomorphism. O

REMARK 2.6. Let R = (R,+,) be a ring. The opposite ring R°? = (R, +, %)
has the same set R and addition + but the “opposite” product a *b="5-a. A left
R-module M = (M, +,-) determines the right R°P-module M°P = (M, +, *) with
z+a=a-x. Now, amap f: M — M is R-linear if and only if f: M°P — M°P is
ReP-linear, and therefore, the rings Endg(M) and Endgor (M°P) are equal. Hence,
if M is a free left R-module with a finite basis (&1, ..., %, ), then the map

M,,(RP) —*— Endg(M)

from Corollary 2.5 is a ring isomorphism.



A division ring R is the simplest kind of ring in the sense that every right (or
left) R-module is a free module. We will next consider a slightly more complicated
class of rings that are called simple rings.

DEFINITION 2.7. Let R be a ring and let M and M’ be left R-modules.
(i) The direct sum of M and M’ is the left R-module

MoM ={(z,)|ze M,z € M'}
with sum and scalar multiplication defined by
(x.2')+ (y,y) = (z+y,z' +y)
a-(z,z') = (azx,ax’).

(ii) A subset N C M is a submodule if for all z,y € Nanda € R,z +y € N
and ax € N.
(iii) The sum of two submodules N, N C M is the submodule

N+ N ={zx+a'|ze N,z e N} C M.
(iv) The sum of two submodules N, N’ C M is direct if the map
N&N - N+ N

that to (x, ') assigns  + x’ is an isomorphism, or equivalently, if the
intersection N N N’ is the zero submodule {0}.

EXAMPLE 2.8. (1) Let R be a ring. A submodule I C R of R considered as a
left R-module is called a left ideal of R.
(2) Let m,n € Z be integers. Then mZ,nZ C Z are ideals and

mZNnZ = [m,n|Z C mZ+nZ = (m,n)Z

where (m,n) and [m, n] are the greatest common divisor and least common multiple
of m and n, respectively. The sum mZ + nZ is direct if and only if one or both of

m and n are zero.
(3) Let R be a ring and let Ms(R) be the ring of 2 x 2-matrices. The subsets

Pyi(R) = {(“ 8) la,ce R} C My(R)

Pya(R) = {(§ Z) IXE R} C My(R)

are left ideals, and the sum P, 1 (R)+ P2 2(R) is direct and equals M3(R). Similarly,
the subsets

Q21(R) = {(8 8) labe R} C Ma(R)
Q2.2(R) = {(0 2) le,d e R} C My(R)

C

are right ideals, and the sum Q2 1(R) + Q2,2(R) is direct and equal to M (R).



DEFINITION 2.9. Let R be a ring.

(1) A left R-module S is simple if it is non-zero and if the only submodules
of S are {0} and S.
(2) A left R-module M is semi-simple if it is a direct sum

M=S+--+5,
of finitely many simple submodules.

ExXAMPLE 2.10. Let D be a division ring. We claim that as a left module over
itself, D is simple. Indeed, let N C D be a non-zero submodule and let a € N be
a non-zero element. If b € D, then b = ba~' - a € N, and hence, N = D which
proves the claim. Let S be any simple left D-module and let € S be a non-zero
element. We claim that the D-linear map f: D — S defined by f(a) = a- x is
an isomorphism. Indeed, the image f(D) C S is a submodule and it is not zero
since x € f(D). Since S is simple, we necessarily have f(D) = S, so f is surjective.
Similarly, the kernel ker(f) = {a € D | f(a) = 0} C D is a submodule, and it is
not all of D since f(1) = x # 0. Since D is simple, we have ker(f) = {0}, so f is
injective. This proves the claim. We conclude that a division ring D has a unique
isomorphism class of simple left D-modules.

LEMMA 2.11. Let D be a division ring and let R = M, (D). The left R-module
of column n-vectors S = M, 1(D) is a simple left R-module.

PROOF. Let N C S be a non-zero submodule. We must show that N =.5. We
first choose a non-zero vector &; € N. By Theorem 1.12, we can choose additional
vectors &, ..., &, € S such that the family (z1,x2,...,x,) is a basis of S as a
right D-vector space. Here and below, we use that, by Remark 1.14, every basis of
S as a right D-vector space has n elements. Now let A € R be the n x n-matrix
whose jth column is x;. We claim that A is invertible. Indeed, since (z1,...,2y)
is a right D-vector space basis, there exists B € R such that AB = I which, by
Gauss elimination, implies that A and B are invertible and that BA = I. Hence

1
0
B.’Bl = BA61 =€) =
0
which shows that e; € N. Now, given & € S, we choose C' € R with x as its first
column. Then x = Ce; € N which shows that x € N as desired. O

PROPOSITION 2.12 (Schur’s lemma). Let R be a ring and let S be a simple left
R-module. Then the ring Endg(S) is a division ring.

PrOOF. Let f: S — S be a non-zero R-linear map. We must show that there
exists an R-linear map ¢g: S — S such that both f o g and g o f are the identity
map of S. It suffices to show that f is a bijection. For the inverse of an R-linear
bijection is automatically R-linear. Now, the image f(S) C S is a submodule, which
is non-zero, since f is non-zero. As S is simple, we conclude that f(S) = S, so f
is surjective. Similarly, ker(f) C S is a submodule, which is not all of S, since f
is not the zero map. Since S is simple, we conclude that ker(f) is zero, so f is
injective. g



