3. Semisimple rings
We next consider semisimple modules in more detail.

LEMMA 3.1. Let R be a ring, let M be a left R-module, and let (S;);cr be a
finite family of simple submodules with sum M =Y., S;. Then there exists a
subset J C I such that M = @

PROOF. We consider a subset J C I which is maximal among subsets with the
property that the sum of submodules Zjet, S; C M is direct. Now, if i € I\ J,

then S; N3, ;S; # {0} or else J would not be maximal. Since S; is simple, we
conclude that S; N _,c ; S; = S;. It follows that 3, ; S; = M as desired. O
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PROPOSITION 3.2. Let R be a ring and let M be a semisimple left R-module.

(i) Let @ be a left R-module and let p: M — @Q be a surjective R-linear map.
Then Q is semisimple and there exists an R-linear map s: Q — M such that
pos: Q — Q is the identity map.

(ii) Let N be a left R-module and let i: N — M be an injective R-linear map.
Then N is semisimple and there exists an R-linear map v: M — N such that
roi: N — N is the identity map.

ProoF. (i) We write M = @,; S; as a finite direct sum of simple submodules.
Let J C I be the subset of indices ¢ such that p(S;) # {0}. By Lemma 3.1, we
can find a subset K C J such that @, p(Si) = Q. Let j: @, ; Si — M be the
canonical inclusion. Then poj is an isomorphism which shows that @ is semisimple.
Moreover, the composite map s = j o (po j)~1: Q@ — M has the desired property
that po s =idg.

(ii) It follows from (i) that there exists a submodule P C M such that the com-
position P — M — M/N of the canonical inclusion and the canonical projection
is an isomorphism. Now, if g: M — M/P is the projection onto the quotient by
P, then goi: N — M/P is an isomorphism. This shows that N is semisimple and
that the map r = (qoi)~!oq: M — N satisfies that r o i = idy. O

We fix a ring R and define A(R) be the set of isomorphism classes of the simple
left R-modules that are of the form S = R/I with I C R a left ideal.! Let S be any
simple left R-module. To define the type of S, we choose a non-zero element « € S
and consider the R-linear map p: R — S given by p(a) = azx. It is surjective, since
S is simple, and hence, induces an isomorphism p: R/I — S, where I = Anng(x) is
the kernel of p. We now define the type of S to be the isomorphism class A € A(R) of
R/I. (Exercise: Show that the type of S is well-defined.) We prove that semisimple
left R-modules admit the following canonical isotypic decomposition.

PrOPOSITION 3.3. Let R be a ring.

(i) Let M be a semisimple left R-module, and let My C M be the submodule given
by the sum of all simple submodules of type A € A(R). Then

M= @ M,y
AEA(R)

and My is a direct sum of simple submodules of type A. In addition, M) is
zero for all but finitely many A € A(R).

11t is not possible, within standard ZFC set theory, to speak of the isomorphism classes of
all simple R-modules or the set thereof. This is the reason that we define A(R) in this way.
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(ii) Let M and N be semisimple left R-modules and let f: M — N be an R-linear
map. Then for every A € A(R), f(My) C Na.

PrOOF. We first prove (i) Since M is semisimple, we can write M as a finite
direct sum M = @, ; S; of simple submodules. If M} = @ieh S;, where I, C I is
the subset of ¢ € I such that S; is of type A, then M = @/\eA(R) M and M} C M,.
We must show that My C Mj. So let S C M be a simple submodule of type A
and let ¢ € I. The composition f;: S — M — S; of the canonical inclusion and the
canonical projection is an R-linear map, and since S and S; are both simple left
R-modules, the map f; is either zero or an isomorphism. If it is an isomorphism,
then we have i € I, which shows that S C M, and hence, My C M} as desired.
Finally, the finite set I is a the disjoint union of the subsets Iy, with A € A(R), and
hence, all but finitely many of these subsets must be empty.

Next, to prove (ii), we let S C M be a simple submodule of type A. Since S
is simple, either f(S) C N is zero or else f|s: S — f(S) is an isomorphism of left
R-modules. Therefore, f(M,) C Ny as stated. O

DEFINITION 3.4. A ring R is semisimple if it semisimple as a left module over
itself. A ring R is simple if it is semisimple and if it has exactly one type of simple
modules.

We proceed to prove two theorems that, taken together, constitute a structure
theorem for semisimple rings.

THEOREM 3.5. Let R be a semisimple ring and let R = @/\GA(R) Ry be the
isotypic decomposition of R as a left R-module.

(i) For every A € A(R), the left ideal Ry C R is non-zero. In particular, the set
of types A(R) is finite.

(ii) For every A € A(R), the left ideal Ry C R is also a right ideal.

(iii) Let a,b € R and write a = Z/\eA(R) ay and b = ZAeA(R) by with ax,by € Ry.
Then ab = Z)\eA(R) axby and a) by € R).

(iv) For every A € A(R), the subset Ry C R is a ring with respect to the restriction
of the addition and multiplication on R, and the identity element is the unique
element ey € Ry such that Z)\GA(R) ex=1.

(v) For every A € A(R), the ring Ry is simple.

ProOF. (i) Let S be a simple left R-module of type A\. We choose a non-zero
element € S and consider again the surjective R-linear map p: R — S defined by
p(a) = ax. By Proposition 3.2 there exists an R-linear map s: S — R such that
pos =idg. But then s(S) C R is a simple submodule of type A, and hence, R) is
non-zero. Finally, it follows from Proposition 3.3 (i) that A(R) is a finite set.

(ii) Let @ € R and let p,: R — R be the map p,(b) = ba defined by right
multiplication by a. It is an R-linear map from the left R-module R to itself. By
Proposition 3.3 (ii), we conclude that p,(Rx) C Ry which is precisely the statement
that Ry C R is a right ideal.

(iii) Since R, C R is a left ideal, we have axb, € R, and since Ry C R is a
right ideal, we have axb, € Ry. This shows that a)b, € Rx N R,, and since

Ry if A=y,

RmR“:{{O} if )£ 4,
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the claim follows.
(iv) We have already proved in (iii) that the multiplication on R restricts to a
multiplication on Ry. Now, for all ay € Ry, we have

aA:aA'lzax(Ze“):ZaA'e#:aAf)\
HEA HEA
and the identity ay = ey - ay is proved analogously. It follows that R) is a ring and
that ey € R) is its identity element.

(v) Let S\ be a simple left R-module of type A. Since Ry C R, the left
multiplication by R on S defines a left multiplication by Ry on Sy. To prove that
this defines a left Ry-module structure on Sy, we must show that ey - © = x, for
all z € S,. We have just proved that ey -y = y, for all y € R). Moreover, by
Proposition 3.3 (i), we can find an injective R-linear map fy: Sy — Ry. Since

Ialex-x) = ex falz) = fa(z),
we conclude that ey - @ = «x, for all x € S, as desired. We further note that Sy is
a simple left Ry-module. Indeed, it follows from (iii) that a subset N C Sy is an
R-submodule if and only if it is an Ry-submodule. Finally, by Proposition 3.3 (i),
the left R-module Ry is a direct sum Sy @ --- @ Sy, of simple submodules, all
of which are isomorphic to the simple left R-module Sy. Therefore, also as a left
Ry-module, Ry is the direct sum Sy 1 @ --- @® Sy, of submodules, all of which are
isomorphic to the simple left Ry-module Sy. This shows that Ry is a semisimple
ring, and (i) shows that every simple left Ry-module is isomorphic to Sy. So R is
a simple ring. O

REMARK 3.6. The inclusion map ¢y: Ry — R is not a ring homomorphism
unless R = R). Indeed, the map i) takes the identity element ey € R, to the
element ey € R, which is not equal to the identity element 1 € R, unless R = R).
However, the projection map

Dx: R — Ry
that takes a = ZueA a, with a, € R, to ay is a ring homomorphism. In general,
the product ring of the family of rings (Ry)xea is the defined to be the set
I 2x = {(an)ren | ax € Ry}
AEA
with componentwise addition and multiplication. The identity element in the prod-

uct ring is the tuple (ex)aea, where ey € Ry is the identity element. We may now
restate Theorem 3.5 (ii)—(v) as saying that the map

p: R— H Ry
AEA(R)
defined by p(a) = (pa(a))rea is an isomorphism of rings, and that each of the
component rings Ry is a simple ring.
THEOREM 3.7. The following statements holds.

(i) Let D be a division ring and let R = M, (D) be the ring of nxn-matrices. Then
R is a simple ring with the left R-module S = M, 1(D) of column n-vectors as
its simple module, and the map

p: D — Endg(9)°P

defined by p(a)(x) = xa is a ring isomorphism.
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(ii) Let R be a simple ring and let S be a simple left R-module. Then S is a finite
dimensional right vector space over the division ring D = Endg(S)°P opposite
of the ring of R-linear endomorphisms of S, and the map

A: R — Endp(S)
defined by A(a)(x) = ax is a ring isomorphism.

Here, in (ii), the ring Endg(5)°P is a division ring by Schur’s lemma, which we
proved last time.

PROOF. (i) We have proved in Lemma 2.11 that S is a simple left R-module.
Now, let e; € M, (D) be the row vector whose ith entry is 1 and whose remaining
entries are 0. Then the map f: S @ ---® S — R, where there are n summands S,
defined by f(vy,...,v,) =vie; + -+ v,e, is an isomorphism of left R-modules.
Indeed, in the n X n-matrix v;e;, the ith column is v; and the remaining columns
are zero. This shows that R is a semisimple ring. By Theorem 3.5 (i), we conclude
that every simple left R-module is isomorphic to S. Hence, the ring R is simple.

It is readily verified that the map p is a ring homomorphism. Now, the kernel
of p is a two-sided ideal in the division ring D, and hence, is either zero or all of D.
But p(1) = idg is not zero, so the kernel is zero, and hence the map p is injective.
It remains to show that p is surjective. So let f: S — S be an R-linear map. We
must show that there exists a € D such that for all y € S, f(y) = ya. To this end,
we fix a non-zero element € S and choose a matrix P € R such that Px = « and
such that PS = xD C S. (The existence of such a matrix P will be shown on the
problem set.) Since f is R-linear, we have

f(x) = f(Px) = Pf(x) € D

which shows that f(x) = xa with a € D. Now, given any y € S, we can find a
matrix A € R such that Ax = y. Again, since f is R-linear, we have

f(y) = f(Ax) = Af(z) = Aza = ya

as desired. This shows that p is surjective, and hence, an isomorphism.

(ii) Since R is a simple ring with simple left R-module S, there exists an
isomorphism of left R-modules f: S@® --- ® S — R from the direct sum of a
finite number, say n, of copies of S onto R. We now have ring isomorphisms

R°P = Endg(R) = Endg(S™) = M, (Endg(S)) = M, (D)

where the left-hand isomorphism is given by Remark 2.6, the middle isomorphism
is induced by the chosen isomorphism f, and the right-hand isomorphism takes the
endomorphism g to the matrix of endomorphisms (g;;) with the endomorphism g;;
defined to be the composition g;; = p; 0 g oi; of the inclusion ;: .S — S™ of the jth
summand, the endomorphism ¢g: S™ — 5", and the projection p;: S™ — S onto
the ith summand. It follows that we have a ring isomorphism

R 5 M, (D°P)°P =5 M, ((D°P)°P) = M, (D)

given by the composition of the isomorphism above and the isomorphism that
takes the matrix A to its transpose matrix A®. This shows that the simple ring R
is isomorphic to the simple ring M,, (D) we considered in (i). Therefore, it suffices
to show that the map A is an isomorphism in this case. But this is precisely the
statement of Corollary 2.5, so the proof is complete. O
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REMARK 3.8. The center of a ring R is the subring Z(R) C R of all elements
a € R with the property that for all b € R, ab = ba; it is a commutative ring. The
center k = Z(D) of the division ring D is a field, and it is not difficult to show
that also Z(M, (D)) = k - I,. Tt is possible for a division ring D to be of infinite
dimension over the center k. However, one can show that if D is of finite dimension
d over k, then d = m? is a square and every maximal subfield E C D has dimension
m over k. For example, the center of the division ring of quarternions H is the field
of real numbers R and the complex numbers C C H is a maximal subfield.

It is now high time that we see an example of a semisimple ring. In general, if
k is a commutative ring and G a group, then the group ring k[G] is defined to be
the free k-module with basis G and with the “convolution” multiplication

D a9 - (O beg) =D (> anbr)g

geG geG 9€G h,keG
hk::g
We note that G C k[G] as the set of basis elements; the unit element e € G is also
the multiplicative unit element in the ring k[G]. Moreover, the map n: k — k[G]
defined by n(a) = a - e is ring homomorphism. If M is a left k[G]-module, then we
also say that M is a k-linear representation of the group G.

Let k be a field and let n: Z — k be the unique ring homomorphism. We
define the characteristic of k£ to be the unique non-negative integer char(k) such
that ker(n) = char(k)Z. For example, the fields Q, R, and C have characteristic 0,
while for every prime number p, the field Z/pZ has characteristic p.

EXERCISE 3.9. Let k be a field. Show that char(k) is either zero or a prime
number, and that every integer n not divisible by char(k) is invertible in k.

THEOREM 3.10 (Maschke’s theorem). Let k be a field and let G be a finite
group, whose order is not divisible by the characteristic of k. Then the group ring
k[G] is a semisimple ring.

PROOF. We show that every left k[G]-module M of finite dimension m over k
is a semisimple left k[G]-module. The proof is by induction on m; the basic case
m = 1 follows from Example 2.11, since a left k[G]-module of dimension 1 over k
is simple as a left k-module, and hence, also as a left k[G]-module. So we let n > 1
and assume, inductively, that every left k[G]-module of dimension m < n over k is
semisimple. We must show that if M is a left £[G]-module of dimension m = n over
k, then M is semisimple. If M is simple, we are done. If M is not simple, there
exists a non-zero proper submodule N C M. We let i: N — M be the inclusion
and choose a k-linear map p: M — N such that 0 o4 = idy. The map p is not
necessarily k[G]-linear. However, we claim that the map r: M — N defined by

r(z) > gplg™')
IGI =
is k[G]-linear and satisfies 7 0 ¢ = idy. Indeed, r is k-linear and if h € G, then
r(hax) gp(g~ hx) = hh™tgp(g~ he)
|G| 2 |G| 2

geG geG

|G|thpk '2) = hr(x)

keG
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which shows that r is k[G]-linear. Moreover, we have

(roi)(x) |G|ng (g~ i(x)) |ng g 'x))

geG geG
1
S ote-c
|G| geG

which shows that r o¢ = idy. This proves the claim. Now, let P be the kernel of 7.
The claim shows that M is equal to the direct sum of the submodules N, P C M.
But N and P both have dimension less than n over k, and hence, are semisimple
by the induction hypothesis. This shows that M is semisimple as desired. O



