REPRESENTATION THEORY

Basic idea: If k£ is a field and V is a k-vector space, then the set of k-linear
automorphisms of V' form a group GL(V') under composition. The basic idea is to
study a general group G by considering group homomorphisms

G —"— GL(V).
We think of g € G as being complicated and of 7(g) € GL(V) as being easier.
Indeed, we can use the methods of linear algebra to study w(g) € GL(V).

Textbook: E. B. Vinberg, Linear representations of groups, Translated from the
1985 Russian original by A. Tacob. Reprint of the 1989 translation. Modern Birkh&auser
Classics. Birkh&user/Springer, New York, 2010.ISBN: 978-3-0348-0062-4.

Schedule: The plan is to cover one chapter in the textbook each week, beginning
with Chapter 0.



BASIC DEFINITIONS

Let k be a field (typically K = R or kK = C), and let V' be a k-vector space. The
group of k-linear automorphisms of V' is given by the set
GL(V)={f:V — V| f is k-linear and an isomorphism}
with group structure given by the map
GL(V) x GL(V) —— GL(V)
that to (f,g) assigns fog.

Definition 1. A k-linear representation of a group G is a pair (V,7) of a k-vector
space V and a group homomorphism 7: G — GL(V).

So elements g € G are represented by k-linear operators m(g): V' — V such that

m(g-h) =m(g) om(h)
and such that
mw(e) =idy .
Here e € G is the identity element.

Suppose that dimy (V) = n < co. A choice of a basis (eq, ..., e,) of V determines
an isomorphism of groups

GL(V) —2= GL, (k)

that to the k-linear automorphism f: V' — V assigns the invertible n x n-matrix
a(f) = (a;j), whose entries a;; € k are the unique solutions to the equations

f(ej) = erarj + ezaz; + - + €nan;

for 1 < j < n. Hence, a k-linear representation 7: G — GL(V') determines and is
determined by the composite group homomorphism

G —"— GL(V) —%— GL, (k).

We stress that the group isomorphism « depends on the choice of basis! We say
that the composite map ao7: G — GL, (k) is a matrix representation of G.

Definition 2. A matrix representation of a group G over a field k is a group
homomorphism 7: G — GL, (k).

In order to do calculations, it can be convenient to choose a basis of a vector
space and calculate in coordinates. However, for theoretical considerations, it is
always best to avoid making a choice of basis.

If we study mathematical objects given by sets equipped with some structure,
then we should at the same time study the maps between such objects that preserve
this structure. If V7 and V5 are k-vector spaces, then the maps f: V3 — V5 that
preserve the structure of a k-vector space are the k-linear maps. And if X; and X,
are topological spaces, then the maps f: X; — X5 that preserve the structure of a
topological space are the continuous maps. The maps that preserve the structure
of a k-linear representation of a fixed group G, which we now define, are called the
intertwining (or equivariant) maps.



Definition 3. If (Vi,7;) and (V;,m2) are k-linear representations of G, then an

intertwining map f: (Vi,m) — (Va,m2) is a k-linear map f: V; — V5 such that
f(mi(g)(@)) = m2(g)(f())

forall g € G and x € V7.

If (V,x) is a k-linear representation of G, then we will sometime abbreviate

gz = m(g)(z).
So if both (V1,m) and (Va, ) are representations of the same group G, then a
k-linear map f: V3 — V5 is intertwining if and only if

flgz) = gf(x)
forall g e G and x € V7.

Definition 4. Let (V4,71) and (Va,m2) be k-linear representations of a group G.
An intertwining map f: (Vi,m1) — (Va,m2) is an isomorphism, if there exists an
intertwining map g: (Va,ma) — (Vi,m) such that go f =idy, and f o g =1idy,.

We show in the problem set that an intertwining map f: (Vi,m1) — (Va,ms) is
an isomorphism if and only if the map f: V3 — V5 is a bijection.

Remark 5. Let (V1,m) and (Va, m2) be two k-linear representations of a group G.
We say that (Vi,71) and (Va,m2) are isomorphic and write (V1,m) ~ (Va, m), if
there exists an isomorphism f: (V1,m) — (V2,m2). However, note that it is much
better to know that “the map f: (Vi,m) — (Va2,m3) is an isomorphism” than it
is to know that “(V4, 1) and (Va, m2) are isomorphic.” Indeed, in the former case,
the given isomorphism f: (Vi,m1) — (Va,m2) tells us *how* to translate between
the two representations, whereas in the latter case, we only know that, in principle,
such a translation is possible.

EXAMPLES

We consider examples of representations and begin with the group
G=(R,+)
of real numbers under addition. Given a € R, the exponential function
G — GLy(R)

defined by 7, (t) = e* is a matrix representation. Indeed, we have

Ta(t 4 u) = A+ = gattau _ gatgau — o (pyp (y)
and

7a(0) = e =¢’ =1,

as required. This begs the question as to whether every 1-dimensional representation

m: G — GL1(R) of G is of this form. The answer is “Yes,” provided that we require
the map 7 to be continuous. We prove the following weaker result:

Lemma 6. Let G = (R, +) be the additive group of real numbers. For every differ-
entiable 1-dimensional representation m: G — GL1(R), there ezists a unique a € R
such that T = 7,: G — GL1(R), namely, a = 7'(0).
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Proof. We will assume the stronger hypothesis that m be differentiable instead of
continuous. That 7 is a representation means that 7(0) = 1 and that for all t,u € R,

m(t+u) =7(t) w(u).

We differentiate the latter equation with respect to u at u = 0, which gives the
ordinary differential equation

7' (t) = w(t) - 7' (0).

Every solution to the ODE is of the form 7 (t) = Ce®, where a = 7/(0) € R, and
the initial condition 7(0) = 1 implies that C' = 1. This proves the lemma in the
case, where 7 is differentiable. O

We let M, (k) be the set of n x n-matrices with entries in k&, considered as a ring
under matrix addition and matrix multiplication.! If k = R or k = C, then we have
the matrix exponential of A € M, (k) defined by the series

1 n
et =" — A" € My (k),
n>0

which converges in operator norm, because
1 1
=A™ < —[lA]™ < el
n! n

If AB = BA, then eA*B = e¢4eB, but this is generally *not* true without this
assumption! In particular, the map

G = (R, +) —2 GL, (k)

defined by m4(t) = e is a group homomorphism, and hence, an n-dimensional
matrix representation of G, where k =R or k = C.

Lemma 7. If m: G = (R, +) — GL, (k) is a differentiable real or complex repre-
sentation, then m = wa: G — GLy, (k) with A = 7'(0) € M, (k).

Proof. As before, we obtain the ordinary differential equation
7' (t) = n(t) - 7' (0)

with the initial condition 7(0) = E € M, (k), and it has 7 = 74 with A = 7/(0) as
its unique solution. O

Ezample 8. We consider
0 —1
A= (1 0) € M>(R)
and calculate

A7 — (—=1)™E if n = 2m is even
a (-1)™A if n=2m+1is odd,

L The book writes Ly, (k) instead of My (k).



which shows that

D D7 (R S (1}

n > 0, even n > 0, odd

- ( )mt2m mt2m+1
_m%:o “emyp O Z T@em+ 1)

=cost-E+sint- A
. <cost —sin t)
sint cost )’
So we conclude that the map 7: G = (R, +) — GLy(R) defined by
o= (52t o)
is a 2-dimensional real representation of G.

In general, if (V,7) is a k-linear representation of a group G, then we call
ker(n) ={9 € G| n(g9) =idy} C G

the kernel of 7. It is a normal subgroup of G. The representation (V, ) will obviously
not be of any help to study the elements in ker(7) C G. We recall that ker(w) = {e}
if and only if 7: G — GL(V) is injective.

Definition 9. A k-linear representation (V, ) of a group G is faithful if the group
homomorphism 7: G — GL(V) is injective.

Ezample 10. (1) The representation 7, : (R, +) — GL;(R) defined by m,(t) = e*
is faithful if and only if a # 0.

(2) The representation 7: (R, +) — GLy(R) defined by
cost —sint
m(t) = <sint cos t)
is not faithful, since ker(w) = 27Z C R.

Ezample 11. We next let G = S, be the (finite) symmetric group on n letters. It
is defined to be the set of all bijections

{1,2,...,n} —2={1,2,...,n}
equipped with the group structure
S, x S, —— 8,
that to (o, 7) assigns the composite bijection o o 7.
If k£ is any field, then we define the n-dimensional matrix representation
S, —2 5 GL, (k)
to be the map that to o € S,, assigns the permutation matrix?

P(0) = (1) €0 -+ €o(m)) € GLa(k).

20One much check that P(c o 7) = P(c) - P(r) and that P(e) = E, which is not difficult, but
we will give a high-tech proof later in Example 13.
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Clearly, the kernel of P is trivial, so P: S,, — GL, (k) is a faithful representation.
We recall that the determinant defines a group homomorphism

GL, (k) —2% GL; (k),

and therefore, the composite map

Sp —2 GL,, (k) 2% GLy (k)

is a 1-dimensional matrix representation of S,,. It is called the sign representation,
since the sign of o, by definition, is given by
sgn(o) = det(P(0)) € {£1} C GL1(k).

If 2 # 0 in k, then the kernel ker(S,) = A,, C S, is the alternating group on n
letters. In particular, the sign representation is not faithful, except in trivial cases.

THE REGULAR REPRESENTATION

If X is any set and k is a field, then we view the set of all maps f: X — k as a
k-vector space k[X] with vector sum and scalar multiplication defined by

(f +9)(@) = fz) + g(z)
(a f)(z)=a- f(x)
The k-linear representation (k[G], L) of a group G, where L: G — k[G] is given by
L(g)(f)(x) = f(g~ ),
is called the left regular representation, and the k-linear representation (k[G], R) of
G, where R: G — GL(k[G)) is given by
R(g)(f)(x) = f(zg),
is called the right regular representation. We check that (k[G], L) and (k[G], R) are
representations of G. First, we clearly have
L(e) = idg(q) = R(e),
and second, the calculations
L(gh)(f)(z) = f((gh) "'z
=L(yg )(L(h)
R(gh)(f)(z) = f(zgh) = R(h)(f)(zg)
(9)(R(R)(f)(x) = (R(g) o R(R))(f)(x)

=R
show that L(gh) = L(g)oL(h) and R(gh) = R(g)oR(h) as required. The left regular
representations give rise to a representation on a subspace V' C k[X], provided that
V is G-invariant in the sense that L(g)(V) C V for all g € G. Similarly, for the
right regular representation.

Ezxample 12. If G = (R, +), then we have
L) (f)(x) = f(=t+z) = f(z—1),

so the following subspaces are G-invariant:
V ={f € k[G] | f is a polynomial function} C k[G],

W = span(cos, sin) C R[G].
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In the case of W C R[G], we have
L(t)(cos)(x) = cos(—t + x) = costcosz + sintsinz
L(t)(sin)(z) = sin(—t + z) = —sintcosx + costsinz,

so we recover the representation 7: G — GLy(R) given by
cost —sint
t) = . .
m(t) (sm t cos t>
PERMUTATION REPRESENTATIONS

Let X be any set, and let S(X) be the group of all bijections o: X — X with
the composition group structure defined by (o o 7)(z) = o(7(z)). For example, the
group S, = S({1,2,...,n}) is the symmetric group on n letters. If k is any field,
then we may define a k-linear representation (k[X],7) of S(X) by 3

m(0)(f) (@) = floe™ ().
A left action by a group G on a set X is defined to be a group homomorphism
p: G — S(X). Thus, given a left action by G on X, the composite map

G —— §(X) —— GL(k[X])

defines a k-linear representation (k[X],wop) of the group G. We say that a k-linear
representation of this form is a permutation representation.

Ezample 13. The identity map p: S, — S({1,2,...,n}) is a left action, where

p(o)(i) = o(i).
So we obtain the permutation representation

T=mop

Sp — GL(k[{1,2,...,n}]).
Let us calculate the corresponding matrix representation with respect to the basis
(e1,€3,...,€ep)

of k[{1,2,...,n}], where e: {1,2,...,n} — k is the map defined by
0-{, Hs)
By the definition of 7, we have
m(0)(e})(j) = e; (071 (5))
{1 if i = o~ 1(j)

1 ifo() =
10 ifo(i) #j
=ei‘,(z—>(y),

which shows that

m(o)(e;) = e:(i)'

3 The book writes o (f) instead of 7(c)(f).
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Hence, we conclude that the matrix that represents the k-linear map

KU1 2,0l — 2 k{12, n)]
with respect to the basis (e}, e3,...,e¥) is the permutation matrix
P(o) = (e(,(l) €r(2) - ea(n)) € GL, (k).
So we recover the matrix representation
S, —2 5 GL, (k)
from Example 11. In particular, we may conclude that the identities
P(ocoT)=P(0)-P(T)
and P(e) = E hold.



