
INDUCTION AND RESTRICTION

This time, we will apply the general theory that we developed last time to the
particular map of left G-sets given by the unique map

G/H
p
// G/G = {G},

where H ⊂ G is a subgroup.1 We have defined functors
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with i an equilvalence of categories, and adjoint pairs of functors
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QCoh([G \(G/G)])

QCoh([G \(G/H)]).

QCoh([H \(H/H)])

Repk(H)
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//

f∗

oo

p∗ ''
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aa

i∗
==

i∗ww

ResGH //

IndGH

oo

We call ResGH = f∗ the restriction from G to H and its right adjoint IndGH = f∗
the induction from H to G. (We also defined a left adjoint f! of f∗, which we call

compact induction from H to G. It is sometimes written indGH in all lower-case.)
Since composition of functors is (strictly) associative, we have

f∗ = (p ◦ i)∗ = i∗ ◦ p∗,
but it is not true that

f∗ = (p ◦ i)∗ = p∗ ◦ i∗.
What is true, however, is that the two composite natural transformations

f∗ // p∗p
∗f∗ // p∗i∗i

∗p∗f∗ = p∗i∗f
∗f∗ // p∗i∗

p∗i∗ // f∗f
∗p∗i∗ = f∗i

∗p∗p∗i∗ // f∗i
∗i∗ // f∗

defined using the counits and units of the three adjunctions are each other’s inverses.
In this way, the two adjoints f∗ and p∗i∗ of f∗ are uniquely naturally isomorphic.
This is a general fact:

1We do not assume that H ⊂ G is normal.
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Proposition 1. Let (f∗, f∗, ε, η) and (f∗, f̄∗, ε̄, η̄) be two adjunctions with the same
left adjoint functor f∗. In this situation, the composite natural transformation

f∗
η̄◦f∗ // f̄∗ ◦ f∗ ◦ f∗

f̄∗◦ε // f̄∗

is the unique natural transformation σ : f∗ → f̄∗ that makes the diagrams

f∗ ◦ f∗ f∗ ◦ f̄∗

id

f∗◦σ
//

ε
��

ε̄
��

f∗ ◦ f∗ f̄∗ ◦ f∗

id

σ◦f∗
//

η

__

η̄

??

commute. In particular, it is a natural isomorphism with inverse

f̄∗
η◦f̄∗ // f∗ ◦ f∗ ◦ f̄∗

f∗◦ε̄ // f∗.

Proof. This is not so easy to show. See for example Saunders MacLane, Categories
for the Working Mathematician, Chapter IV, Section 7, Theorem 2. �

Here is an application:

Corollary 2. The adjunction

QCoh([G \(G/H)])
i∗ //

Repk(H)
i∗
oo

is an adjoint equivalence.

Proof. In the adjunction (i∗, i∗, ε, η), the functors i∗ and i∗ are given by restriction
and right Kan extension along the canonical inclusion

BH = [H \(H/H)]
i // [G \(G/H)],

and we wish to prove that ε and η are natural isomorphisms. We have proved last
time that i is an equilvance of categories. So if h be a quasi-inverse of i, then h∗

is a quasi-inverse of i∗, and we can choose natural isomorphisms ε̄ : i∗ ◦ h∗ → id
and η̄ : id → h∗ ◦ i∗ such that (i∗, h∗, ε̄, η̄) is an adjunction. By Proposition 1, the
natural transformation σ : i∗ → h∗ defined as the composition

i∗
η̄◦i∗ // i∗i

∗h∗
ε◦h∗ // h∗

is an isomorphism and is unique with the property that the diagrams

i∗ ◦ i∗ i∗ ◦ h∗

id

i∗◦σ //

ε
��

ε̄
��

i∗ ◦ i∗ h∗ ◦ i∗

id

σ◦i∗ //

η

__

η̄

??

commute. In particular, we conclude that ε and η are natural isomorphisms. �

Proposition 1 also implies that to “calculate” the induction functor

Repk(H) Repk(G),
IndGH //
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it suffices to produce an adjunction (ResGH , IndGH , ε, η) with ResGH = f∗. For in this

situation, the proposition will give a unique natural isomorphism σ : IndGH → f∗ to
any other right adjoint functor f∗ of f∗, say, to the right Kan extension along the
functor f : BH → BG.

Now, given a k-linear representation of H,

BH
τ // Vectk

with W = τ(0), we define the induced k-linear representation

BG Vectk
π=IndGH(τ)

//

as follows. The k-vector space π(0) = V = MapH(G,W ) is given by the set of all
maps f : G→W such that for all h ∈ H and x ∈ G,

f(h · x) = h · f(x) = τ(h)(f(x)),

with vector sum and scalar multiplication by a ∈ k defined pointwise by

(f + f ′)(x) = f(x) + f ′(x)

(f · a)(x) = f(x) · a,

and for g ∈ G, the k-linear map π(g) : V → V is given by

π(g)(f)(x) = f(xg).

We define the counit ετ : (ResGH ◦ IndGH)(τ)→ τ to be the k-linear map

MapH(G,W ) // W

that to f : G→W assigns ετ (f) = f(e), and the calculation

ετ (h · f) = (h · f)(e) = f(e · h) = f(h · e) = h · f(e) = h · ετ (f)

shows intertwines between the two k-linear representations ofH in question. Finally,
if we define the unit ηπ : π → (IndGH ◦ResGH)(π) as follows. Let π : BG→ Vectk be
a k-linear representation of G, and let V = π(0). We define

V
ηπ // MapH(G,V )

by ηπ(v)(x) = π(x)(v). The calculation

ηπ(v)(h · x) = π(h · x)(v) = (π(h) ◦ π(x))(v) = π(h)(ηπ(v))

shows that ηπ ∈ MapH(G,V ), so the map is well-defined. And the calculation

ηπ(g · v)(x) = π(x)(π(g)(v)) = π(x · g)(v) = ηπ(v)(x · g) = (g · ηπ(v))(x)

shows that it intertwines between the two representations in question. Thus, we
obtain the following special case of Frobenius reciprodity II, which we proved in
Theorem 8 of Lecture 9.

Theorem 3 (Frobenius reciprocity II). In the situation above, the maps

Hom(ResGH(π), τ) Hom(π, IndGH(τ))
α //

β
oo

defined by α(h) = IndGH(h) ◦ ηπ and β(k) = ετ ◦ResGH(k) are each other’s inverses.
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Example 4. Let G = Σ4 be the group of permutations of the set {1, 2, 3, 4}, and
let H ⊂ G be the subgroup of permutations σ such that σ(4) = 4. We identify H
with the group Σ3 of permutations {1, 2, 3} via the group isomorphism ρ : H → Σ3

defined by ρ(σ) = σ|{1,2,3}. We let π1, π2, π3, π4, π5 be the irreducible complex
representations ofG defined in Lecture 7, and let τ1, τ2, τ3 be the irreducible complex
representations of H defined in Lecture 1. So π1 and τ1 are the 1-dimensional trivial
representations, π2 and τ2 are the 1-dimensional sign representations, π3 and τ3 are
the standard representations of dimension 3 and 2, respectively, π4 ' π2 ⊗ π3 is
3-dimensional, and π5 is 2-dimensional. We wish to understand

π = IndGH(τ1),

which has dimC(π) = [G : H] · dimC(τ1) = 4. We have the canonical isomorphism⊕
1≤i≤5 Hom(πi, π)⊗ πi // π

that to fi ⊗ xi assigns fi(xi), and by Frobenius reciprocity,

Hom(πi, π) = Hom(πi, IndGH(τ1)) ' Hom(ResGH(πi), τ1).

We see immediately form the definitions that

ResGH(π1) ' τ1
ResGH(π2) ' τ2
ResGH(π3) ' τ1 ⊕ τ3,

so by Schur’s lemma, we conclude that the canonical map

Hom(π1, π)⊗ π1 ⊕Hom(π3, π)⊗ π3
// π

is an isomorphism. Hence, less canonically, we have an isomorphism

IndGH(τ1) ' π1 ⊕ π3.

Let us finish the calculation of ResGH(πi). Using that π4 = π2 ⊗ π3, we get

ResGH(π4) = ResGH(π2 ⊗ π3) ' ResGH(π2)⊗ ResGH(π3)

' τ2 ⊗ (τ1 ⊕ τ3) ' τ2 ⊕ τ3,

where the second identification uses the “symmetric monoidal” structure on ResGH .
Finally, we consider the diagram of groups

1 // N // G
q
// H // 1,

H

f

OO

where N = {e, (12)(34), (13)(24), (14)(23)}, and where q maps g ∈ G to the unique
element q(g) ∈ H ∩ gN . In Lecture 7, we defined π5 = q∗(τ3), so we find that

ResGH(π5) = (f∗ ◦ q∗)(τ3) = (q ◦ f)∗(τ3) = τ3.

Remark 5. As Example 4 shows, if π is irreducible, then ResGH(π) may well not be
so. (Physicists call this “symmetry breaking.”) The example also shows that if τ is

irreducible, then IndGH(τ) may also not be irreducible.
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Suppose H ⊂ G is a subgroup of finite index [G : H] = n. In this case, the map

G/H
p
// G/G

is proper, so by Theorem 9 from Lecture 9, the norm map Nmp : p! → p∗ is a natural

isomorphism. This means that, under this assumption, the functor IndGH is also left

adjoint to ResGH . Let us spell out the adjunction

(IndGH ,ResGH , ε
′, η′).

We choose a family (g1, . . . , gn) of representatives of the right cosets Hg ∈ H \G.
If (V, π) is a k-linear representation of G, then we define the counit

(IndGH ◦ResGH)(π)
ε′π // π

to be the k-linear map ε′π : MapH(G,V )→ V given by ε′π(f) =
∑

1≤i≤n f(gi), and

if (W, τ) is a k-linear representation of H, then we define the unit

τ
η′τ // (ResGH ◦ IndGH)(τ)

to be the k-linear map η′τ : W → MapH(G,W ) given by

η′τ (w)(x) =

{
τ(x)(w) if x ∈ H,

0 if x /∈ H.

Therefore, by invoking Proposition 1, Frobenius preciprodicity I, which we proved
in Theorem 7 of Lecture 9, specializes to the following result.

Theorem 6. Let G be a group, and let H ⊂ G be a subgroup of finite index. Given
k-linear representations π and τ of G and H, respectively, the maps

Hom(IndGH(τ), π) Hom(τ,ResGH(π))
α′ //

β′
oo

defined by α′(h) = ResGH(h)◦η′τ and β′(k) = ε′π ◦ IndGH(k) are each other’s inverses.

Remark 7. The restriction ResGH = f∗ always has the left adjoint indKH = f!, but
the norm map Nmf : f! → f∗ is a natural isomorphism only if [G : H] <∞.

Let H,K ⊂ G be two subgroups, and let σ and τ be k-linear representations of
H and K, respectively. Frobenius reciprocity gives us the canonical isomorphism

Hom(IndGH(σ), IndGK(τ))
β
// Hom((ResGK ◦ IndGH)(σ), τ),

so we would like to understand the functor ResGK ◦ IndGH , and this is exactly what
the base-change theorem allows us to do. We first determine the set

MapG(G/H,G/K)

of G-equivariant maps f : G/H → G/K. Given such a map, we have f(H) = aK,
for some a ∈ G, and hence, by the G-equivariance of f , we have

f(gH) = gaK

for all g ∈ G. In particular, we have haK = aK for all h ∈ H, or equivalently,

a−1Ha ⊂ K.
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Conversely, given a ∈ G such that a−1Ha ⊂ K, the map fa : G/H → G/K defined
by fa(gH) = gaK is G-equivariant. Moreover, we observe that fa = fb if and only
if aK = bK, or equivalently, if and only if

a−1b ∈ K.

If a−1Ha = K, then fa = ra is the G-equivariant map

G/H
ra // G/a−1Ka

given by right multiplication by a. Indeed,

fa(gH) = gaa−1Ha = gHa = ra(gH).

In general, if a−1Ha ⊂ K, then fa factors in two ways

G/H G/aKa−1

G/a−1Ha G/K

paKa
−1

H //

ra

��

ra

��pK
a−1Ha //

fa

((

as the composition of ra and the canonical projections.

We now assume that G is finite and consider the cartesian square of left G-sets

X G/H

G/K G/G,

p1 //

p2

��

pGH
��pGK //

where H,K ⊂ G are subgroups and X = G/H ×G/K. The base-change theorem,
Theorem 11 in Lecture 9, gives a canonical natural isomorphism

(pGK)∗ ◦ (pGH)∗ // p2∗ ◦ p∗1,

so we wish to understand the left G-set X. The map s : G/K → X defined by
s(aK) = (H, aK) is not G-equivariant, unless H = G, but it induces a surjection

G/K
s̄ // G \X = π0([G \X])

that maps aK to the G-orbit s̄(aK) = G · (H, aK) through s(aK) = (H, aK), and
moreover, (H, aK) and (H, bK) are in the same G-orbit if and only if ab−1 ∈ H.
This shows that we have a bijection

H \G/K // G \X

that to HaK assigns the G-orbit G · (H, aK). Moreover, the isotropy subgroup at
(H, aK) for the left action by G on X is equal to

G(H,aK) = H ∩ aKa−1,

since (H, aK) = (gH, gaK) if and only if g ∈ H and g ∈ aKa−1. We now choose a
map a : {1, 2, . . . ,m} → G, whose composition with the canonical projection

{1, 2, . . . ,m} a // G
q
// H \G/K
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is a bijection. We write as = a(s) and say that (a1, a2, . . . , am) is a family of double
coset representatives. With this choice, we obtain a G-equivariant bijection∐

1≤s≤mG/(H ∩ asKa−1
s )

u // X

that to g(H ∩ asKa−1
s ) assigns (gH, gasK). Moreover, we have

p1 ◦ u =
∑

1≤s≤m pH
H∩asKa−1

s

p2 ◦ u =
∑

1≤s≤m ras ◦ p
asKa

−1
s

H∩asKa−1
s
,

where “Σ” is notation for the map from the disjoint union that on the sth summand
is given by the indicated map. Finally, we note that the diagram

B(aKa−1) [G \(G/aKa−1)]

BK [G \(G/K)],

iaKa−1
//

ca

��

ra

��
iK //

where ca : aKa−1 → K maps aka−1 to k, commutes, up to the natural isomorphism

iK ◦ ca // ra ◦ iaKa−1

defined by the isomorphism

(iK ◦ ca)(0) (ra ◦ iaKa−1)(0)

K aK

//

(a,K)
//

in the category [G \(G/K)].

With all these choices made, the base-change theorem gives rise to the following
result known as the double coset formula.

Theorem 8. In the situation above, there is a natural isomorphism⊕
1≤s≤m cas∗ ◦ Ind

asKa
−1
s

H∩asKa−1
s
◦ResH

H∩asKa−1
s

// ResGK ◦ IndGH

that depends on the various choices made.

Proof. By the base-change theorem, the diagram

QCoh([G \X]) QCoh([G \(G/H)])

QCoh([G \(G/K)]) QCoh([G \(G/G)])

p2∗

��

p∗1oo

(pGH)∗
��(pGK)∗

oo

commutes, up to canonical natural isomorphism. Moreover, using the (non-canonical)
G-equivariant bijection∐

1≤s≤mG/(H ∩ asKa−1
s )

u // X = G/H ×G/K,
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this translates into a diagram

∏
1≤s≤m Repk(H ∩ asKa−1

s ) Repk(H)

∏
1≤s≤m Repk(asKa

−1
s )

∏
1≤s≤m Repk(K)

Repk(K) Repk(G),

(ResH
H∩asKa

−1
s

)
oo

∏
Ind

asKa
−1
s

H∩asKa
−1
s��

IndGH

��

∏
cas∗

��

⊕
�� ResGKoo

which commutes, up to a natural isomorphism that depends on the (many) choices
made. The translation uses the fact, which we stated as Proposition 1, that adjoints
of functors, if they exist, are unique, up to unique natural isomorphism. �

We will use these results to prove a theorem called the intertwining number
theorem. So we let G be a finite group, and let H,K ⊂ G be subgroup. Let (V, σ)
and (W, τ) be k-linear representations of H and K, respectively. By Frobenius
reciprodicity I+II and the double coset formula, we obtain isomorphisms

Hom(IndGH(σ), IndGK(τ)) ' Hom((ResGK ◦ IndGH)(σ), τ)

'
⊕

1≤s≤m Hom((cas∗ ◦ Ind
asKa

−1
s

H∩asKa−1
s
◦ResH

H∩asKa−1
s

)(σ), τ)

'
⊕

1≤s≤m Hom(ResH
H∩asKa−1

s
(σ), (Res

asKa
−1
s

H∩asKa−1
s
◦ c∗as)(τ)).

We note that for a ∈ G, the k-vector space

Hom(ResHH∩aKa−1(σ), (ResaKa
−1

H∩aKa−1 ◦ c∗a)(τ))

consists of the k-linear maps f : V →W such that

f(σ(h)(v)) = τ(a−1ha)(f(v))

for all h ∈ G and v ∈ V , or equivalently, such that

f ◦ σ(h) = τ(k) ◦ f
for all (h, k) ∈ H × K with ha = ak. Let us write d(σ, τ ; s) for the dimension of
this k-vector space for a = as. To see that it only depends on σ, τ , and s, and not
on the choice of as ∈ HasK ∈ H \G/K, we rewrite the calculation of

Hom(IndGH(σ), IndGK(τ))

in a way that does not involve any choices. If we let

Xs
is // X = G/H ×G/K

be the inclusion of the sth orbit, then the calculation becomes

Hom((pGH)∗(σ), (pGK)∗(τ)) ' Hom(((pGK)∗ ◦ (pGH)∗)(σ), τ)

' Hom(p2∗ p
∗
1(σ), τ) ' ⊕1≤s≤m Hom(p2∗ is∗ i

∗
s p
∗
1(σ), τ)

' ⊕1≤s≤m Hom(p2! is! i
∗
s p
∗
1(σ), τ) ' ⊕1≤s≤m Hom(i∗s p

∗
1(σ), i∗s p

∗
2(τ)),
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which, in turn, gives the formula

d(σ, τ ; s) = dimk Hom(i∗s p
∗
1(σ), i∗s p

∗
2(τ)).

So this number manifestly only depends on σ, τ , and s. Finally, by taking dimensions
everywhere, we obtain the following theorem due to Mackey.

Theorem 9 (Intertwining number theorem). In the situation above,

dimk Hom(IndGH(σ), IndGK(τ)) =
∑

1≤s≤m d(σ, τ ; s).
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