INDUCTION AND RESTRICTION

This time, we will apply the general theory that we developed last time to the
particular map of left G-sets given by the unique map

G/H - G/G ={G},
where H C G is a subgroup.! We have defined functors

BG%BH

(G\(G/G)] L [m\(H/H)]

N oA

[G\(G/H)]
with ¢ an equilvalence of categories, and adjoint pairs of functors
Res$
Rep,(G) Rep,, (H)

G
H Ind% H

*

QCoh([G\(G/G)]) <:> QCoh([H \(H/H)])

¢

RS I

QCoh([G\(G/H)]).

We call Resg = f* the restriction from G to H and its right adjoint Indg = f
the induction from H to G. (We also defined a left adjoint fi of f*, which we call
compact induction from H to G. It is sometimes written ind% in all lower-case.)
Since composition of functors is (strictly) associative, we have

[r=(poi)" =i"op,
but it is not true that

fe = (poi)s = pu0in.
What is true, however, is that the two composite natural transformations

Jo = D" fr — Dulai™ D" fro = Pata [* fr — Pain

defined using the counits and units of the three adjunctions are each other’s inverses.
In this way, the two adjoints f, and p.i, of f* are uniquely naturally isomorphic.
This is a general fact:

L'We do not assume that H C G is normal.



Proposition 1. Let (f*, f.,e,n) and (f*, f,&1) be two adjunctions with the same
left adjoint functor f*. In this situation, the composite natural transformation

f nof* f* f*of*%f;

is the unique natural transformation o: f. — f. that makes the diagrams

Frof =20 peo foofr == fog
N / BN /

commute. In particular, it is a natural isomorphism with inverse

AN LN

Proof. This is not so easy to show. See for example Saunders MacLane, Categories
for the Working Mathematician, Chapter IV, Section 7, Theorem 2. O
Here is an application:
Corollary 2. The adjunction
QCoh([G\(G/H)]) " Rep;(H)
is an adjoint equivalence.

Proof. In the adjunction (i*, 44, €,7n), the functors ¢* and i, are given by restriction
and right Kan extension along the canonical inclusion

BH = [H\(H/H)] —— [G\(G/H)],

and we wish to prove that € and 7 are natural isomorphisms. We have proved last
time that 7 is an equilvance of categories. So if h be a quasi-inverse of ¢, then h*
is a quasi-inverse of ¢*, and we can choose natural isomorphisms €: i* o h* — id
and 77: id — h* o ¢* such that (:*, h*, €,7) is an adjunction. By Proposition 1, the
natural transformation o: i, — h* defined as the composition

h*
T4 *M* i*h* =25 p*

is an isomorphism and is unique with the property that the diagrams

7* oz*4>z oh* 14 01 4)h*oz
commute. In particular, we conclude that € and 7 are natural isomorphisms. O

Proposition 1 also implies that to “calculate” the induction functor

IndG
Repy (H) — Repy(G),
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it suffices to produce an adjunction (Resg, Indg, €,m) with Resg = f*. For in this
situation, the proposition will give a unique natural isomorphism o: Indg — f« to
any other right adjoint functor f, of f*, say, to the right Kan extension along the
functor f: BH — BG.

Now, given a k-linear representation of H,
BH —Z— Vecty,
with W = 7(0), we define the induced k-linear representation

m=Ind§ (7

BG —)> Vecty,

as follows. The k-vector space w(0) = V = Mapy (G, W) is given by the set of all
maps f: G — W such that for all h € H and z € G,

f(h-z)=h-f(x) =7(h)(f(z)),
with vector sum and scalar multiplication by a € k defined pointwise by
(f + 1)) = f(2) + f(2)
(f - a)(x) = f(z) - a,
and for g € G, the k-linear map n(g): V — V is given by
m(9)(f)(x) = f(zg).
We define the counit ¢, : (Res$ 0Ind$)(7) — 7 to be the k-linear map
Mapy (G,W) —— W
that to f: G — W assigns e.(f) = f(e), and the calculation
er(h-f)=(h-f)le)=fle-h)=f(h-e)=h-fle) =he(f)
shows intertwines between the two k-linear representations of H in question. Finally,
if we define the unit 7, : 7 — (Ind% o Res%)(rr) as follows. Let 7: BG — Vecty, be
a k-linear representation of G, and let V' = 7(0). We define
V " Map (G, V)
by 0 (v)(x) = 7(x)(v). The calculation
N (v)(h-x) = w(h-)(v) = (x(h) o 7(x))(v) = 7(h)(nx(v))
shows that 1, € Mapy(G,V), so the map is well-defined. And the calculation
Nx(g - v) (@) = 7m(2)(n(g)(v)) = (- g)(v) = nx(v)(x - g) = (g nx(v))(x)
shows that it intertwines between the two representations in question. Thus, we

obtain the following special case of Frobenius reciprodity II, which we proved in
Theorem 8 of Lecture 9.

Theorem 3 (Frobenius reciprocity II). In the situation above, the maps

[e3%

Hom(Res$ (7), 7) «——— Hom(w, Ind% (1))
B

defined by a(h) = Ind$ (h) oy and B(k) = €, o Res% (k) are each other’s inverses.
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Ezample 4. Let G = X4 be the group of permutations of the set {1,2,3,4}, and
let H C G be the subgroup of permutations o such that o(4) = 4. We identify H
with the group X3 of permutations {1, 2,3} via the group isomorphism p: H — 33
defined by p(o) = ol{1,2,33. We let 71, mo, 73, m4, 75 be the irreducible complex
representations of G defined in Lecture 7, and let 7, 75, 73 be the irreducible complex
representations of H defined in Lecture 1. So m; and 7, are the 1-dimensional trivial
representations, my and 75 are the 1-dimensional sign representations, w3 and 73 are
the standard representations of dimension 3 and 2, respectively, m4 ~ 7o ® 73 is
3-dimensional, and 5 is 2-dimensional. We wish to understand

7 =Ind%(n),
which has dime(7) = [G : H] - dimc(7y) = 4. We have the canonical isomorphism

D, <i<s Hom(m;, m) @ mj —— 7

that to f; ® x; assigns f;(x;), and by Frobenius reciprocity,
Hom (7, 7) = Hom(7;, Ind$ (1)) ~ Hom(Res% (), 71).
We see immediately form the definitions that
Res$ (m1) ~ 7
Res% (m3) ~ 7o
Res$ (m3) ~ 7 & 73,
so by Schur’s lemma, we conclude that the canonical map
Hom(7my,7) ® m @ Hom(ms, m) @ 13 —— 7
is an isomorphism. Hence, less canonically, we have an isomorphism
md% (r) ~ 7 @ 7.
Let us finish the calculation of Res% (7;). Using that 74 = 7y ® 73, we get
Res$ (1) = Res$ (1 @ m3) ~ Res& (m2) @ Res$ (3)
~ 71 ® (11 B T73) = To D T3,

where the second identification uses the “symmetric monoidal” structure on Resg.
Finally, we consider the diagram of groups

1 N G—1.m 1
I/
H

where N = {e, (12)(34), (13)(24), (14)(23) }, and where ¢ maps g € G to the unique
element ¢(g) € H N gN. In Lecture 7, we defined 75 = ¢*(73), so we find that

Resf (m5) = (f* 0 ") (13) = (qo f)"(73) = 75.

Remark 5. As Example 4 shows, if 7 is irreducible, then Resg (7) may well not be
so. (Physicists call this “symmetry breaking.”) The example also shows that if 7 is
irreducible, then Ind% (7) may also not be irreducible.
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Suppose H C G is a subgroup of finite index [G : H] = n. In this case, the map
G/H L~ aG/a

is proper, so by Theorem 9 from Lecture 9, the norm map Nm,,: py — p, is a natural
isomorphism. This means that, under this assumption, the functor Indg is also left
adjoint to Resg. Let us spell out the adjunction

(Ind%, ResG, €, 17).

We choose a family (g1, ...,g,) of representatives of the right cosets Hg € H \G.
If (V,m) is a k-linear representation of G, then we define the counit

(Ind$ o Res$) () SN

to be the k-linear map €.: Mapy (G,V) — V given by € .(f) = >_, ;< f(g:), and
if (W, 7) is a k-linear representation of H, then we define the unit

T (Res$ o Ind$) (1)
to be the k-linear map n,.: W — Mapy (G, W) given by

, (@) (w) ifxeH,
n-(w)(@) = {0 if ¢ H.

Therefore, by invoking Proposition 1, Frobenius preciprodicity I, which we proved
in Theorem 7 of Lecture 9, specializes to the following result.

Theorem 6. Let G be a group, and let H C G be a subgroup of finite index. Given
k-linear representations m and T of G and H, respectively, the maps

Hom(Ind$ (1), 7) ——— Hom(r, Res$ ()
ﬁ/

defined by o/ (h) = Res$ (h) onl. and B'(k) = €. oInd$ (k) are each other’s inverses.
Remark 7. The restriction Resg = f* always has the left adjoint indg = fi, but

the norm map Nmy: fi — f, is a natural isomorphism only if [G : H] < oco.

Let H, K C G be two subgroups, and let ¢ and 7 be k-linear representations of
H and K, respectively. Frobenius reciprocity gives us the canonical isomorphism

Hom(Ind$, (o), Ind$ (7)) —— Hom((Res§ o Ind$))(o), ),
so we would like to understand the functor Resf( oIndg, and this is exactly what
the base-change theorem allows us to do. We first determine the set
Mapq(G/H,G/K)
of G-equivariant maps f: G/H — G/K. Given such a map, we have f(H) = oK,
for some a € G, and hence, by the G-equivariance of f, we have
f(gH) = gaK
for all g € G. In particular, we have haK = aK for all h € H, or equivalently,

a 'Ha C K.
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Conversely, given a € G such that a 'Ha C K, the map f,: G/H — G/K defined
by f.(¢9H) = gaK is G-equivariant. Moreover, we observe that f, = f, if and only
if a K = bK, or equivalently, if and only if

a'be K.
If a='Ha = K, then f, = r, is the G-equivariant map
G/H "+ GJa'Ka
given by right multiplication by a. Indeed,
falgH) = gaa 'Ha = gHa = r,(gH).
In general, if a='Ha C K, then f, factors in two ways

-1
aKa
PH

G/H— G/aKa™!

l fa J’
Ta Ta
K

P, -1

G/a"'Ha ——""— G/K
as the composition of r, and the canonical projections.

We now assume that G is finite and consider the cartesian square of left G-sets
X —2—G/H
JZ& lpg
P
G/K— G/G,

where H, K C G are subgroups and X = G/H x G/K. The base-change theorem,
Theorem 11 in Lecture 9, gives a canonical natural isomorphism

(P%)* © (P§)« — 2w o p],
so we wish to understand the left G-set X. The map s: G/K — X defined by
s(aK) = (H,aK) is not G-equivariant, unless H = G, but it induces a surjection
G/K —— G\X = m([G\X])

that maps aK to the G-orbit 5(aK) = G- (H,aK) through s(aK) = (H,aK), and
moreover, (H,aK) and (H,bK) are in the same G-orbit if and only if ab~! € H.
This shows that we have a bijection

H\G/K —— G\X

that to HaK assigns the G-orbit G - (H,aK). Moreover, the isotropy subgroup at
(H,aK) for the left action by G on X is equal to

G(H,aK) =HnN CLKail,

since (H,aK) = (gH, gaK) if and only if g € H and g € aKa~!. We now choose a
map a: {1,2,...,m} — G, whose composition with the canonical projection

{1,2,...,m} —» G —5 H\G/K
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is a bijection. We write as = a(s) and say that (a,as,...,a,) is a family of double
coset, representatives. With this choice, we obtain a G-equivariant bijection

H1gsgm G/(HNasKa;') —— X
that to g(H NasKag ') assigns (gH, gasK). Moreover, we have

H
O =
P1ouw =3 1<ocm Prng, Kazt

O’U,_Z asKa_
P20U=21<s<m Tas pHﬂa Kas

where “¥” is notation for the map from the disjoint union that on the sth summand
is given by the indicated map. Finally, we note that the diagram

B(aKa~1) —"_, [G\(G/aKa~")]

BEK E [G\(G/K)],

where ¢, : aKa~! — K maps aka™! to k, commutes, up to the natural isomorphism
1K OCq —>Tq OlgKg—1
defined by the isomorphism

(ZK © Ca)(o) E— (Ta O lgKa- 1 )

K
in the category [G\(G/K)].

With all these choices made, the base-change theorem gives rise to the following
result known as the double coset formula.

(a,K)

Theorem 8. In the situation above, there is a natural isomorphism

aSKa7 Ie
@1gsgm Cazx © Inde Kao! ORGSHma Kol T RebK oIndy

that depends on the various choices made.

Proof. By the base-change theorem, the diagram

Qoh([G'\X]) " QCoh([G \(G/H)))
Pz*l J(Pg)*
QCoh([G\(G/K))) 2 quon(G\(G/a))

commutes, up to canonical natural isomorphism. Moreover, using the (non-canonical)
G-equivariant bijection

[l<icm G/(HNasKa;') —— X = G/H x G/K,
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this translates into a diagram

(Res™ _1
HNasKaj

HlSsSm Repy, (H N aSKagl) Repk (H)

—1
asKa
Ind "7
HNasKaj

[ics<m Repy(asKag ™)
IT cas= Indg
H1§sgm Repy (K)

&

G
Res%

Rep, (K) Rep,(G),

which commutes, up to a natural isomorphism that depends on the (many) choices
made. The translation uses the fact, which we stated as Proposition 1, that adjoints
of functors, if they exist, are unique, up to unique natural isomorphism. Il

We will use these results to prove a theorem called the intertwining number
theorem. So we let G be a finite group, and let H, K C G be subgroup. Let (V,0)
and (W, 7) be k-linear representations of H and K, respectively. By Frobenius
reciprodicity I4+II and the double coset formula, we obtain isomorphisms

Hom(Ind% (¢), Ind% (7)) ~ Hom((Res% o Ind$) (o), 7)

Kal H
~ @1§s§m Hom((cq, « © Ind:maikagl o ResHmasKagl)(a), T)

zehggmHmMR%gmdm?QﬂJngzg;?oqghn.
We note that for a € G, the k-vector space
Hom(Resfinrca1(0), (Resii a1 0¢2)(7))
consists of the k-linear maps f: V' — W such that
flo(h)(v)) = 7(a” ha)(f(v))

for all h € G and v € V, or equivalently, such that

foa(h)=r7(k)o f
for all (h,k) € H x K with ha = ak. Let us write d(o, 7;s) for the dimension of

this k-vector space for a = as. To see that it only depends on o, 7, and s, and not
on the choice of a; € Ha; K € H\G/K, we rewrite the calculation of

Hom(Ind% (o), Ind% (7))
in a way that does not involve any choices. If we let
X, "3 X =G/HxG/K
be the inclusion of the sth orbit, then the calculation becomes
Hom((pf)«(0), (p%)+(7)) = Hom(((p%)" o (pf)+)(0), 7)
~ Hom(ps. pi(0), 7) ~ @1<s<m Hom(pas isi i pi(0), 7)

>~ D1<s<m Hom(paris i% pi(0), T) = ©1<s<m Hom(if pi(0),i% p5(7)),
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which, in turn, gives the formula
d(o, 73 5) = dimy, Hom(i pi(0), i p3(7)).

So this number manifestly only depends on o, 7, and s. Finally, by taking dimensions
everywhere, we obtain the following theorem due to Mackey.

Theorem 9 (Intertwining number theorem). In the situation above,

dimy, Hom(Indfl (o), Ind[G((T)) = Zlgsgm d(o,7;s).



