
REPRESENTATIONS OF THE SYMMETRIC GROUPS

Let X be a finite set with n elements, and let G = Aut(X) be its group of
automorphisms. We proceed to construct representatives for all isomorphism classes
of irreducible complex representations of G. Since the set of isomorphism classes of
irreducible complex representations is bijective to the set C(G) of conjugacy classes
of elements in G, we first introduce some language to understand this set.

We recall that every permutation g ∈ G can be written as a product

g = g1 . . . gm

of disjoint cycles and that this product decomposition is unique, up to a reordering
of the factors. The cycle type of g ∈ G is the sequence (λ1, . . . , λm) of lengths of
the cycles g1, . . . , gm, listed in non-increasing order, and it is a basic fact that two
permutations g, h ∈ G are conjugate if and only if they have the same cycle type.

Definition 1. Let n be a non-negative integer. A partition of n is a non-increasing
sequence λ = (λ1, λ2, . . . ) of non-negative integers such that

∑
i≥1 λi = n.

Let Part(n) be the set of partitions of n. The map that to a permutation g ∈ G
assigns its cycle type λ(g) ∈ Part(n) induces a bijection

C(G) // Part(n).

Example 2. Let n = 7, and let g ∈ G be the permutation given by
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We have g = (152)(643)(7), so g has cycle type λ(g) = (3, 3, 1).

Let us write N for the set of positive integers.

Definition 3. A Young diagram is a finite subset S ⊂ N × N with the property
that for all (i, j) ∈ N × N, if either (i + 1, j) ∈ S or (i, j + 1) ∈ S or both, then
(i, j) ∈ S. The cardinality of the set S is called the size of the Young diagram.

Example 4. We picture a Young diagram as a collection of boxes arranged as the
entries in a matrix. For instance, there are five Young diagrams of size n = 4:

We will see that these correspond to the five isomorphism classes of irreducible
complex representations G = Σ4.
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Given a Young diagram S of size n, we define its row partition λ(S) by

λ(S)i = card({j ∈ N | (i, j) ∈ S}),
and we define its column partition µ(S) by

µ(S)j = card({i ∈ N | (i, j) ∈ S}).
We write Young(n) for the set of Young diagrams of size n.

Proposition 5. The maps λ, µ : Young(n) → Part(n) that to a Young diagram
assign its row partition λ(S) and column partition µ(S) are bijections.

Proof. This is clear from the definitions. �

Example 6. In Example 2, the row partition (resp. column partition) of the first
(resp. third) Young diagram is equal to the column partition (resp. row partition)
of the second (resp. fourth) Young diagram. The row and column partitions of the
fifth Young diagram are equal.

Definition 7. Let X be a finite set. A Young tableau on X is an injective map

X
u // N× N

whose image S = u(X) is a Young diagram.

Given a Young tableau, the map u : X → S = u(X) is a bijection. So to specify a
Young tableau u : X → N×N with a given Young diagram S as its image amounts
to assigning an element of X to each “box” in S.

Example 8. The figures

8 12 4 9 1

11 3 10

5 6 13

7 2

illustrate a Young tableau on X = {1, 2, . . . , 13} and its underlying Young diagram.

Let Tabl(X) be the set of Young tableaux on X. The group homomorphism

Gop = Aut(X)op
ρ
// Aut(Tabl(X))

given by ρ(g)(u) = u◦g defines a right action by the group G on Tabl(X). It is free
action. Indeed, if u ◦ g = u, then g = e, since u is injective.

Proposition 9. The map to a Young tableau assigns its image induces a bijection

Tabl(X)/G // Young(n)

from the set of orbits of the right action by G on Tabl(X) onto the set of Young
diagrams of size n = card(X).

Proof. Indeed, the map is surjective, by the definition of a Young tableau, and it
is injective, since two Young tableaux u, v : X → N×N have the same image if and
only if there exists a bijection g : X → X such that v = u ◦ g. �
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Given a Young tableau u, we consider its composition with the projections

X

u

��

p◦u

��

q◦u

��

N N× N
p
oo

q
// N

given by p(i, j) = i and q(i, j) = j, respectively.

Definition 10. The row stabilizer H ⊂ G and the column stabilizer K ⊂ G of a
Young tableau u : X → N× N are the subgroups

H = {g ∈ G | p ◦ u ◦ g = p ◦ u} ⊂ G,
K = {g ∈ G | q ◦ u ◦ g = q ◦ u} ⊂ G.

More informally, the row stabilizer consists of the permutations, which permute
the elements within the rows of a Young tableau, but which do not permute elements
that belong to separate rows. Similarly for the column stabilizer.

Lemma 11. Let u : X → N × N be a Young tableau. If H,K ⊂ G = Aut(X) are
its row and column stabilizers, then H ∩K = {e}.

Proof. Indeed, if p ◦ u ◦ g = p ◦ u and q ◦ u ◦ g = q ◦ u, then u ◦ g = u, and, as we
have already noticed, this implies that g = e, since u is injective. �

We give the set Part(n) of partitions of n the lexicographic order, where λ > µ
if there exists an m ≥ 1 such that λm > µm and λi = µi for 1 ≤ i < m. It is a total
order in the sense that if λ 6= µ, then either λ > µ or µ > λ.

Lemma 12. Let u, v : X → N × N be Young tableaux, let H be the row stabilizer
of u, and let K be the column stabilizer of v. Let S = u(X) and T = v(X) be the
underlying Young diagrams, and suppose that λ(S) ≥ λ(T ). If, in addition, every
row in u and every column in v have at most one element in common, then S = T
and there exists h ∈ H and k ∈ K such that u ◦ h = v ◦ k.

Proof. We prove the statement by induction on n = card(X), the case n = 1
being trivial. So we let n = m and assume that the statement has been proved
for n < m. Let Xi = (p ◦ u)−1(i) ⊂ X be the set of elements in the ith row of u,
and let Yj = (q ◦ v)−1(j) ⊂ X for the set of elements in the jth column of v. By
assumption, the intersection Xi ∩ Yj has at most one element for all (i, j). Also by
assumption, λ(S) ≥ λ(T ), so in particular that λ(S)1 ≥ λ(T )1. But since there are
λ(S)1 elements in X1, and since at most one of them belongs to each of the columns
Y1, . . . , Yλ(T )1 , we also have λ(S)1 ≤ λ(T )1, so λ(S)1 = λ(T )1. We can now choose
h ∈ H such that for all x ∈ X1,

(q ◦ u ◦ h)(x) = (q ◦ v)(x),

and we can further choose k ∈ K such that for x ∈ X1,

(p ◦ u)(x) = (p ◦ v ◦ k)(x).

It follows that for all x ∈ X1, we have

(p ◦ u ◦ h)(x) = (p ◦ u)(x) = (p ◦ v ◦ k)(x),

(q ◦ u ◦ h)(x) = (q ◦ v)(x) = (q ◦ v ◦ k)(x),
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which, in turn, implies that for all x ∈ X1, we have

(u ◦ h)(x) = (v ◦ k)(x).

We can now bring ourselves in a position to invoke the inductive hypothesis. Indeed,
we let X ′ = X rX1, and define u′, v′ : X ′ → N× N by

(p ◦ u′)(x) = (p ◦ u ◦ h)(x)− 1,

(q ◦ u′)(x) = (q ◦ u ◦ h)(x),

(p ◦ v′)(x) = (p ◦ v ◦ k)(x)− 1,

(q ◦ v′)(x) = (q ◦ v ◦ k)(x).

It is clear that S′ = u′(X ′) and T ′ = v′(X ′) again are Young diagrams, so that u′

and v′ are Young tableaux; that λ(S′) ≥ λ(T ′); and that every row in u′ and every
column in v′ at most have one element of X ′ in common. Let G′ = Aut(X ′), and
let H ′,K ′ ⊂ G′ be the row stabilizer of u′ and the column stabilizer of v′. Since
card(X ′) < card(X), we conclude from the inductive hypothesis that S′ = T ′ and
that there exist h′ ∈ H ′ and k′ ∈ K ′ such that u′ ◦ h′ = v′ ◦ k′. We conclude that
S = T . Moreover, since the group homomorphism ρ : G′ → G defined by

ρ(g′)(x) =

{
x if x ∈ X1,

g′(x) if x ∈ X ′,

maps H ′ and K ′ into H and K, respectively, we further conclude that

u ◦ h ◦ ρ(h′) = v ◦ k ◦ ρ(k′).

This completes the proof. �

We can now reap the benefits of the work that we did in the last two lectures
together with the lemmas above and classify all irreducible complex representations
of G = Aut(X), up to non-canonical isomorphism. Let S be a Young diagram, let
u : X → N × N be a Young tableau with u(X) = S, and let H,K ⊂ G be its row
and column stabilizers. We define

π+
S = (IndGH ◦ResGH)(τ)

π−S = (IndGK ◦ResGK)(σ),

where τ is the 1-dimensional trivial representation of G and σ is the 1-dimensional
sign representation of G.

Theorem 13. Let X be a finite set with n elements, and let G = Aut(X).

(1) If S is a Young diagram of size n, then, up to non-canonical isomorphism,
there is a unique irreducible complex representation πS of G, which occurs
in the decompositions of both π+

S and π−S .
(2) If S and T are distinct Young diagrams of size n, then the representations

πS and πT are non-isomorphic.
(3) If π is an irreducible complex representation of G, then π ' πS, for some

Young diagram S of size n.

Proof. To prove (1), it suffices to show that

dimC Hom(π+
S , π

−
S ) = 1,
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and to do so, we will use the results on induced representations that we proved in
the last two lectures. We consider the cartesian diagram of left G-sets

G/H ×G/K G/H

G/K G/G

p1 //

p2

��

pGH
��pGK //

f

((

where we have included f = pGH ◦ p1 = pGK ◦ p2. We have canonical isomorphisms

Hom(π+
S , π

−
S ) = Hom((pGH)∗(p

G
H)∗τ, (pGK)∗(p

G
K)∗σ)

' Hom((pGK)∗(pGH)∗(p
G
H)∗τ, (pGK)∗σ)

' Hom((pGK)! (p
G
K)∗(pGH)∗(p

G
H)∗τ, σ)

' Hom((pGK)! (p
G
K)∗(pGH)! (p

G
H)∗τ, σ)

' Hom((pGK)!p2!p
∗
1(pGH)∗τ, σ)

' Hom(f ! f
∗τ, σ)

' Hom(f∗τ, f∗σ).

Moreover, we defined a non-canonical isomorphism of left G-sets∐
1≤s≤mG/H ∩ asKa−1s // G/H ×G/K,

which depends on a choice of a family (a1, . . . , am) of representatives of the double
cosets H \G/K, among other things. So we conclude that

Hom(π+
S , π

−
S ) '

∏
1≤s≤m Hom(ResG

H∩asKa−1
s

(τ),ResG
H∩asKa−1

s
(σ)).

Since both ResGH∩aKa−1(τ) and ResGH∩aKa−1(σ) are 1-dimensional representations
of H ∩ aKa−1, we find that

dimC Hom(ResGH∩aKa−1(τ),ResGH∩aKa−1(σ))

=

{
1 if sgn(g) = 1 for all g ∈ H ∩ aKa−1,

0 otherwise.

For the double coset HaK = HK, we have

dimC Hom(ResGH∩K(τ),ResGH∩K(σ)) = 1,

since H ∩ K = {e} by Lemma 11. Hence, we must show that if a /∈ HK, then
there exists g ∈ H ∩ aKa−1 such that sgn(g) = −1. To this end, we consider, in
addition to the tableau u : X → N × N, the tableau v = u ◦ a−1 : X → N × N,
whose column stabilizer is aKa−1. We claim that there exists a row in u and a
column in v, which have at least two elements in common. Granting this claim, the
transposition g that interchanges these two elements belongs to H∩aKa−1 and has
sgn(g) = −1, which proves (1). To prove claim, we assume that every row in u and
every column in v have at most one element in common. In this case, Lemma 12
shows that there exists h ∈ H and aka−1 ∈ aKa−1 such that u ◦ h = v ◦ aka−1.
But then a = h−1k ∈ HK, which is a contradicts that a /∈ HK.

To prove (2), it suffices to show that

dimC Hom(π+
S , π

−
T ) = 0.
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Arguing as in the proof of (1), we see that it further suffices to show that for all
Young tableaux u, v : X → N×N with u(X) = S and v(X) = T , there exists a row
in u and a column in v that have at least two elements in common. But this follows
immediately from Lemma 12. Indeed, since the lexicographic order on Part(n) is a
total order, we can assume without loss of generality that λ(S) ≥ λ(T ).

Finally, we prove (3). We have constructed the family

(πS)S∈Young(n)

of pairwise non-isomorphic irreducible complex representations of G. But the set
of Young diagrams of size n and the set of conjugacy classes of elements in G
are bijective, so we have found all irreducible complex representations of G, up to
non-canonical isomorphism. �

The representation πS is called the Specht representation associated with the
Young diagram S. Its isomorphism class is independent of the choice of Young
tableau u that we made in its definition.

Remark 14. We defined π+
S = (IndGH ◦ResGH)(τ) and π−S = (IndGK ResGK)(σ), but we

could of course just as well have switched τ and σ in this definition.

If the subset S ⊂ N× N is a Young diagram of size n, then so is the subset

S′ = {(i, j) ∈ N× N | (j, i) ∈ S},

which we call the conjugate Young diagram of S.

Lemma 15. If S is a Young diagram of size n, and if S′ is its conjugate Young
diagram, then the associated Specht representations are related by

πS′ ' πS ⊗ σ.

Proof. Let u : X → N × N be a Young tableau with u(X) = S, and let H and K
be its row stabilizer and column stabilizer. Let u′ : X → N× N be the unique map
with p ◦ u′ = q ◦ u and q ◦ u′ = p ◦ u. Then u′(X) = S′ and u′ has row stabilizer K
and column stabilizer H. Thus,

π+
S′ = (IndGK ◦ResGK)(τ) ' (IndGK ◦ResGK)(σ ⊗ σ)

' (IndGK ◦ResGK)(σ)⊗ σ ' π−S ⊗ σ

π−S′ = (IndGH ◦ResGH)(σ) ' (IndGH ◦ResGH)(τ ⊗ σ)

' (IndGH ◦ResGH)(τ)⊗ σ ' π+
S ⊗ σ.

Here we have used that, in general, for H ⊂ G, one has

ResGH(π ⊗ ρ) ' ResGH(π)⊗ ResGH(ρ)

IndGH(σ ⊗ ResGH(ρ)) ' IndGH(σ)⊗ ρ

for all representations π and ρ of G and σ of H. The latter identity is called the
projection formula. �

Example 16. For H = Σ3, we have earlier found three irreducible finite dimensional
complex representations of H, namely, the 1-dimensional trivial representation τ1
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and sign representation τ2, and the 2-dimensional standard representation τ3. These
correspond to the following Specht representations:

τ1 τ2 τ3

Similarly, for G = Σ4, we have earlier found five irreducible finite dimensional
complex representations of G, namely, the 1-dimensional trivial representation π1
and sign representation π2, the 3-dimensional standard representation π3 and its
tensor product π4 = π2 ⊗ π3 with the sign representation, and the 2-dimensional
representation π5. These correspond to the following Specht representations:

π1 π2 π3 π4 π5

Using Lemma 15, we see immediately from these listings that τ2⊗ τ3 ' τ3 and that
π2 ⊗ π5 ' π5. If we identify H with the subgroup of G consisting of all g ∈ G with
g(4) = 4, then one can also show that, in terms of Young diagrams, ResGH takes an
irreducible G-representation π to the sum with multiplicity one of all irreducible
H-representations τ corresponding to the Young diagrams obtained from the Young
diagram for π by removing one box. So we have

ResGH(π1) ' τ1
ResGH(π2) ' τ2
ResGH(π3) ' τ1 ⊕ τ3
ResGH(π4) ' τ2 ⊕ τ3
ResGH(π5) ' τ3

Similarly, one can show that IndGH takes an irreducible H-representation τ to the
sum with multiplicity one of all irreducible G-representations π corresponding to
the Young diagrams obtained from the Young diagram associated with τ by adding
one box. So we find that

IndGH(τ1) ' π1 ⊕ π3
IndGH(τ2) ' π2 ⊕ π3
IndGH(τ3) ' π3 ⊕ π4 ⊕ π5,

which is also what we have calculated directly before.

Finally, we mention that for Young diagrams S and T , Frobenius has given a
formula for the value χπS

(g) of the character of the Specht representation πS on
an element g in the conjugacy class corresponding to T in terms of combinatorial
data that can be read off from the Young diagrams S and T directly. The formula
is called the Frobenius character formula.


