

## THE CLASSICAL GROUPS

This week's lecture will cover Chapter 7 in the book, but I will begin more generally by defining the socalled classical (matrix) groups. These will be subgroups of the groups  $\mathrm{GL}_n(\mathbb{R})$ ,  $\mathrm{GL}_n(\mathbb{C})$ , and  $\mathrm{GL}_n(\mathbb{H})$  of invertible  $n \times n$ -matrices with entries in real numbers, complex numbers, and quaternions, respectively.

If  $k = (k, +, \cdot)$  is a ring, then we define the opposite ring  $k^{\mathrm{op}} = (k, +, \star)$  to have the same set of elements and the same addition but the opposite multiplication

$$a \star b = b \cdot a.$$

If  $k$  is a division ring, then so is  $k^{\mathrm{op}}$ .

**Definition 1.** Let  $k$  be a ring. A ring homomorphism

$$k \xrightarrow{\sigma} k^{\mathrm{op}}$$

is an antiinvolution, if  $\sigma \circ \sigma = \mathrm{id}$ .

In particular, an antiinvolution is an isomorphism. We remark that the identity map  $\mathrm{id}_k: k \rightarrow k$  is an antiinvolution if and only if  $k$  is commutative. We will often write  $a^*$  or  $\bar{a}$  instead of  $\sigma(a)$ .

*Example 2.* (1) If  $k = \mathbb{R}$ , then the identity map is an antiinvolution, and one can show that it is the only one.

(2) If  $k = \mathbb{C}$ , then the identity map and complex conjugation are antiinvolutions.  
(3) If  $k = \mathbb{H}$ , then quaternionic conjugation, which is the map  $\sigma: \mathbb{H} \rightarrow \mathbb{H}$  that to the quaternion  $q = a + ib + jc + kd$  assigns the quaternion

$$q^* = a - ib - jc - kd$$

is an antiinvolution. The identity map  $\mathrm{id}_{\mathbb{H}}: \mathbb{H} \rightarrow \mathbb{H}$  is not an antiinvolution.

**Definition 3.** Let  $k$  be a division ring, and let  $\sigma: k \rightarrow k^{\mathrm{op}}$  be an antiinvolution. The adjoint matrix of  $A = (a_{ij}) \in M_{m,n}(k)$  is  $A^* = (a_{ji}^*) \in M_{n,m}(k)$ .<sup>1</sup>

The number of rows in  $A^*$  is equal to the number of columns in  $A$  and vice versa. So it is only meaningful to ask whether  $A = A^*$  if  $A$  is a square matrix. If  $k$  is a field and  $\sigma: k \rightarrow k^{\mathrm{op}}$  is the identity map, then it is customary to call  $A^*$  the transpose matrix of  $A$  and to denote it by  $A^t$  instead of  $A^*$ .

**Proposition 4.** Let  $k$  be a division ring, and let  $\sigma: k \rightarrow k^{\mathrm{op}}$  be an antiinvolution. For all matrices  $A$ ,  $B$ , and  $C$  of appropriate dimensions, the following hold:

- (I1)  $(A + B)^* = A^* + B^*$
- (I2)  $(AB)^* = B^* A^*$
- (I3)  $E^* = E$
- (I4)  $(A^*)^* = A$

---

<sup>1</sup> The notation  $A^\dagger$  for the adjoint matrix is also common, particularly in physics.

*Proof.* Let us prove (2). For the purpose of this proof, given  $A \in M_{m,n}(k)$ , we write  $A^* = (a'_{ij}) \in M_{n,m}(k)$ . So  $a'_{ij} = a^*_{ji}$  by the definition of the adjoint matrix. We let  $A \in M_{m,n}(k)$  and  $B \in M_{n,p}(k)$  with product  $C = AB \in M_{m,p}(k)$  and calculate

$$c'_{ik} = c^*_{ki} = \left( \sum_{j=1}^m a_{kj} b_{ji} \right)^* = \sum_{j=1}^m (a_{kj} b_{ji})^* = \sum_{j=1}^m b^*_{ji} a^*_{kj} = \sum_{j=1}^m b'_{ij} a'_{jk}.$$

This proves (2), and the remaining identities are proved analogously.  $\square$

**Definition 5.** Let  $k$  be a division ring, and let  $\sigma: k \rightarrow k^{\text{op}}$  be an antiinvolution. A square matrix  $A \in M_n(k)$  is hermitian, if  $A^* = A$ , and it is skew-hermitian, if  $A^* = -A$ .

If  $k$  is a field and  $\sigma: k \rightarrow k^{\text{op}}$  is the identity map, then it is customary to say that  $A \in M_n(k)$  is symmetric, if  $A^t = A$ , and that  $A$  is skew-symmetric, if  $A^t = -A$ .

We will now consider vector spaces over the division ring  $k$ , and we will always consider right vector spaces in the sense that scalars multiply from the right.

**Definition 6.** Let  $k$  be a division ring, let  $\sigma: k \rightarrow k^{\text{op}}$  be an antiinvolution, and let  $V$  be a right  $k$ -vector space. A hermitian form on  $V$  is a map

$$V \times V \xrightarrow{\langle \cdot, \cdot \rangle} k$$

such that the following hold for all  $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$  and  $a \in k$ :

- (H1)  $\langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{z} \rangle$
- (H2)  $\langle \mathbf{x}, \mathbf{y} \cdot a \rangle = \langle \mathbf{x}, \mathbf{y} \rangle \cdot a$
- (H3)  $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$
- (H4)  $\langle \mathbf{x} \cdot a, \mathbf{y} \rangle = a^* \cdot \langle \mathbf{x}, \mathbf{y} \rangle$
- (H5)  $\langle \mathbf{y}, \mathbf{x} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle^*$

*Example 7.* Let  $k$  be a division ring, and let  $\sigma: k \rightarrow k^{\text{op}}$  be an antiinvolution. Let  $k^n = M_{n,1}(k)$  be the right  $k$ -vector space of column  $n$ -matrices with entries in  $k$ . If  $A \in M_n(k)$  is a hermitian matrix, then the map  $\langle \cdot, \cdot \rangle: k^n \times k^n \rightarrow k$  defined by  $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^* A \mathbf{y}$  is a hermitian form. Conversely, if  $\langle \cdot, \cdot \rangle: k^n \times k^n \rightarrow k$  is a hermitian form, then the matrix  $A = (a_{i,j}) \in M_n(k)$  with entries  $a_{ij} = \langle \mathbf{e}_i, \mathbf{e}_j \rangle$  is a hermitian matrix.

If  $k = \mathbb{R}, \mathbb{C}$ , or  $\mathbb{H}$ , and if  $\sigma: k \rightarrow k^{\text{op}}$  is the identity map, complex conjugation, and quaternionic conjugation, respectively, then for all  $a \in k$ ,  $a^* = a$  if and only if  $a \in \mathbb{R} \subset k$ . In particular, if  $\langle \cdot, \cdot \rangle$  is a hermitian form on a right real, complex, or quaternionic vector space  $V$ , then for all  $\mathbf{x} \in V$ , we have  $\langle \mathbf{x}, \mathbf{x} \rangle \in \mathbb{R}$ .

**Definition 8.** Let  $k = \mathbb{R}, \mathbb{C}$ , or  $\mathbb{H}$ , and let  $\sigma: k \rightarrow k^{\text{op}}$  be the identity map, complex conjugation, and quaternionic conjugation, respectively. A hermitian inner product on a right  $k$ -vector space  $V$  is a hermitian form  $\langle \cdot, \cdot \rangle: V \times V \rightarrow k$  such that, in addition to (H1)–(H5), the following positivity property holds:

- (P) For all  $\mathbf{0} \neq \mathbf{x} \in V$ ,  $\langle \mathbf{x}, \mathbf{x} \rangle > 0$ .

Let  $k = \mathbb{R}, \mathbb{C}$ , or  $\mathbb{H}$ , and let  $\sigma: k \rightarrow k^{\text{op}}$  be the identity map, complex conjugation, and quaternionic conjugation, respectively. The standard hermitian inner product

on the right  $k$ -vector space  $k^n = M_{n,1}(k)$  of column  $n$ -vectors is defined to be the map  $\langle -, - \rangle: k^n \times k^n \rightarrow$  given by the matrix product

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^* \mathbf{y},$$

which is meaningful, since  $\mathbf{x}^* \in M_{1,n}(k)$  and  $\mathbf{y} \in M_{n,1}(k)$ .

**Definition 9.** Let  $(U, \langle -, - \rangle_U)$  and  $(V, \langle -, - \rangle_V)$  be right real, complex or quaternionic vector spaces with hermitian inner products. A  $k$ -linear map  $f: V \rightarrow U$  is an isometry with respect to the given hermitian inner products if

$$\langle f(\mathbf{x}), f(\mathbf{y}) \rangle_U = \langle \mathbf{x}, \mathbf{y} \rangle_V$$

for all  $\mathbf{x}, \mathbf{y} \in V$ .

An isometry  $f: U \rightarrow V$  is always injective, but it need not be an isomorphism. However, if it is an isomorphism, then the inverse map  $f^{-1}: U \rightarrow V$  is automatically an isometry. In particular, an endomorphism  $f: V \rightarrow V$  of a finite dimensional real, complex, or quaternionic vector space that is an isometry with respect to a given hermitian inner product is automatically an isometric isomorphism.

**Definition 10.** Let  $(U, \langle -, - \rangle_U)$  and  $(V, \langle -, - \rangle_V)$  be right real, complex or quaternionic vector spaces with hermitian inner products. Two  $k$ -linear maps  $f: V \rightarrow U$  and  $g: U \rightarrow V$  are adjoint with respect to the given hermitian inner products if

$$\langle \mathbf{x}, f(\mathbf{y}) \rangle_U = \langle g(\mathbf{x}), \mathbf{y} \rangle_V$$

for all  $\mathbf{x} \in U$  and  $\mathbf{y} \in V$ .

If both  $g: U \rightarrow V$  and  $h: U \rightarrow V$  are adjoint to  $f: V \rightarrow U$ , then  $g = h$ , so if an adjoint of  $f: V \rightarrow U$  exists, then it is unique. If  $U$  and  $V$  are finite dimensional, then an adjoint always exists.

**Proposition 11.** Let  $(U, \langle -, - \rangle_U)$  and  $(V, \langle -, - \rangle_V)$  be finite dimensional right real, complex, or quaternionic vector spaces with hermitian inner products, and let  $f: V \rightarrow U$  be a linear map. Let  $(\mathbf{u}_1, \dots, \mathbf{u}_m)$  and  $(\mathbf{v}_1, \dots, \mathbf{v}_n)$  be bases of  $U$  and  $V$  that are orthonormal with respect to  $\langle -, - \rangle_U$  and  $\langle -, - \rangle_V$ , respectively.<sup>2</sup>

- (1) There exists a unique linear map  $g: U \rightarrow V$  that is adjoint to  $f: V \rightarrow U$  with respect to  $\langle -, - \rangle_U$  and  $\langle -, - \rangle_V$ .
- (2) If the matrix  $A \in M_{m,n}(k)$  represents  $f: V \rightarrow U$  with respect to the given orthonormal bases, then the adjoint matrix  $A^* \in M_{n,m}(k)$  represents  $g: U \rightarrow V$  with respect to these bases.

*Proof.* We claim that if  $f: V \rightarrow U$  and  $g: U \rightarrow V$  are the linear maps represented by  $A \in M_{m,n}(k)$  and  $A^* \in M_{n,m}(k)$  with respect to the given orthonormal bases, then these two maps are adjoint with respect to the given hermitian inner products. Indeed, let  $\mathbf{u} \in U$  and  $\mathbf{v} \in V$ , and let  $\mathbf{x} \in k^m$  and  $\mathbf{y} \in k^n$  be their coordinates with respect to the given bases. Since the bases are orthonormal, we find

$$\langle \mathbf{u}, f(\mathbf{v}) \rangle_U = \mathbf{x}^* A \mathbf{y} = \mathbf{x}^* (A^*)^* \mathbf{y} = (A^* \mathbf{x})^* \mathbf{y} = \langle g(\mathbf{u}), \mathbf{v} \rangle_V.$$

This proves the proposition, since an adjoint map, if it exists, is unique.  $\square$

---

<sup>2</sup> This means that  $\langle \mathbf{u}_i, \mathbf{u}_j \rangle_U = \delta_{ij}$  and  $\langle \mathbf{v}_i, \mathbf{v}_j \rangle_V = \delta_{ij}$ .

**Lemma 12.** *Let  $k = \mathbb{R}$ ,  $\mathbb{C}$ , or  $\mathbb{H}$ , and let  $(U, \langle \cdot, \cdot \rangle_U)$  and  $(V, \langle \cdot, \cdot \rangle_V)$  be right  $k$ -vector spaces with hermitian inner product. If  $f: V \rightarrow U$  and  $g: U \rightarrow V$  are adjoint with respect to  $\langle \cdot, \cdot \rangle_U$  and  $\langle \cdot, \cdot \rangle_V$ , then  $f: V \rightarrow U$  is a linear isometry with respect to  $\langle \cdot, \cdot \rangle_U$  and  $\langle \cdot, \cdot \rangle_V$  if and only if  $g \circ f = \text{id}_V$ .*

*Proof.* We find that  $f: V \rightarrow U$  is a linear isometry if and only if

$$\langle (g \circ f)(\mathbf{x}), \mathbf{y} \rangle_V = \langle \mathbf{x}, \mathbf{y} \rangle_V$$

for all  $\mathbf{x}, \mathbf{y} \in V$ . If  $g \circ f = \text{id}_V$ , then this is certainly true, and conversely, we find, by setting  $\mathbf{y} = (g \circ f)(\mathbf{x}) - \mathbf{x}$ , that

$$\langle \mathbf{y}, \mathbf{y} \rangle_V = \langle (g \circ f)(\mathbf{x}) - \mathbf{x}, \mathbf{y} \rangle_V = \langle (g \circ f)(\mathbf{x}), \mathbf{y} \rangle_V - \langle \mathbf{x}, \mathbf{y} \rangle_V = 0,$$

which shows that  $g \circ f = \text{id}_V$ , because  $\langle \cdot, \cdot \rangle_V$  is an inner product.  $\square$

**Theorem 13.** *Let  $k = \mathbb{R}$ ,  $\mathbb{C}$ , or  $\mathbb{H}$ , and let  $(U, \langle \cdot, \cdot \rangle_U)$  and  $(V, \langle \cdot, \cdot \rangle_V)$  be finite dimensional right  $k$ -vector spaces with hermitian inner products. Let  $f: V \rightarrow U$  be a linear map, and let  $A \in M_{m,n}(k)$  be the matrix that represents  $f: V \rightarrow U$  with respect to bases  $(\mathbf{u}_1, \dots, \mathbf{u}_m)$  of  $U$  and  $(\mathbf{v}_1, \dots, \mathbf{v}_n)$  of  $V$  that are orthonormal with respect to the given hermitian inner products. The following (1)–(3) are equivalent.*

- (1) *The map  $f: V \rightarrow U$  is a linear isometry.*
- (2) *The matrix identity  $A^* A = E_n$  holds.*
- (3) *The family  $(\mathbf{a}_1, \dots, \mathbf{a}_n)$  of vectors in  $k^m$  consisting of the columns of  $A$  is orthonormal with respect to the standard hermitian inner product.*

*In addition, the following (4)–(6) are equivalent.*

- (4) *The map  $f: V \rightarrow U$  is an isometric isomorphism.*
- (5) *The matrix  $A$  is invertible and  $A^{-1} = A^*$ .*
- (6) *The family  $(\mathbf{a}_1, \dots, \mathbf{a}_n)$  of columns of  $A$  is basis of  $k^m$  that is orthonormal with respect to the standard hermitian inner product.*

*Proof.* By Proposition 11, the adjoint map  $g: U \rightarrow V$  is represented by the adjoint matrix  $A^* \in M_{n,m}(k)$  with respect to the given bases, so the equivalence of (1) and (2) follows from Lemma 12. The  $(i, j)$ th entry in  $A^* A$  is  $\mathbf{a}_i^* \mathbf{a}_j$ , which, by definition, is the standard hermitian inner product of  $\mathbf{a}_i, \mathbf{a}_j \in k^m$ , from which the equivalence of (2) and (3) follows. To prove the equivalence of (4) and (5), we note that  $f: V \rightarrow U$  is an isomorphism if and only if  $A$  is invertible, in which case

$$A^{-1} = (A^* A)A^{-1} = A^*(AA^{-1}) = A^*.$$

Finally, the equivalence of (5) and (6) uses that an  $n \times n$ -matrix invertible if and only if the family consisting of its columns is a basis of  $k^n$ .  $\square$

**Corollary 14.** *Let  $k = \mathbb{R}$ ,  $\mathbb{C}$ , or  $\mathbb{H}$ , and let  $(V, \langle \cdot, \cdot \rangle)$  be a finite dimensional right  $k$ -vector space with hermitian inner product, and let  $(\mathbf{v}_1, \dots, \mathbf{v}_n)$  be a basis of  $V$  that is orthonormal with respect to  $\langle \cdot, \cdot \rangle$ . Let  $f: V \rightarrow V$  be an endomorphism, and let  $A \in M_n(k)$  be the matrix that represents  $f: V \rightarrow V$  with  $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ .*

- (1) *The endomorphism  $f: V \rightarrow V$  is an isometry with respect to  $\langle \cdot, \cdot \rangle$  if and only if  $A^* A = E_n$ . If so, then  $A$  is invertible and  $A^{-1} = A^*$ .*
- (2) *The endomorphism  $f: V \rightarrow V$  is selfadjoint<sup>3</sup> with respect to  $\langle \cdot, \cdot \rangle$  if and only if  $A^* = A$ .*

<sup>3</sup>This means that  $f: V \rightarrow V$  and its adjoint  $g: V \rightarrow V$  with respect to  $\langle \cdot, \cdot \rangle$  are equal.

*Proof.* The statement (1) follows from Theorem 13 and from the fact that a square matrix that has a right inverse is invertible. This fact, in turn, is a consequence of Gauss elimination. The statement (2) follows from Proposition 11.  $\square$

*Remark 15.* A matrix  $P \in \mathrm{GL}_n(k)$  such that  $P^* = P^{-1}$  is said to be orthogonal, if  $k = \mathbb{R}$ , unitary, if  $k = \mathbb{C}$ , and quaternionic unitary, if  $k = \mathbb{H}$ . A matrix  $A \in M_n(k)$  such that  $A^* = A$  is said to be symmetric, if  $k = \mathbb{R}$ , hermitian, if  $k = \mathbb{C}$ , and quaternionic hermitian, if  $k = \mathbb{H}$ .

We now define the classical groups. The subgroups

$$\begin{aligned} O(n) &= \{Q \in \mathrm{GL}_n(\mathbb{R}) \mid Q^* = Q^{-1}\} \subset \mathrm{GL}_n(\mathbb{R}) \\ U(n) &= \{U \in \mathrm{GL}_n(\mathbb{C}) \mid U^* = U^{-1}\} \subset \mathrm{GL}_n(\mathbb{C}) \\ \mathrm{Sp}(n) &= \{S \in \mathrm{GL}_n(\mathbb{H}) \mid S^* = S^{-1}\} \subset \mathrm{GL}_n(\mathbb{H}) \end{aligned}$$

are called the orthogonal group, the unitary group, and the compact symplectic group. They are topological groups with respect to the subspace topology from the metric topology on  $M_n(k)$ , and they are all compact. In particular, we have

$$\begin{aligned} O(1) &= \{x \in \mathrm{GL}_1(\mathbb{R}) \mid x^*x = 1\} \subset \mathrm{GL}_1(\mathbb{R}) \\ U(1) &= \{z \in \mathrm{GL}_1(\mathbb{C}) \mid z^*z = 1\} \subset \mathrm{GL}_1(\mathbb{C}) \\ \mathrm{Sp}(1) &= \{q \in \mathrm{GL}_1(\mathbb{H}) \mid q^*q = 1\} \subset \mathrm{GL}_1(\mathbb{H}), \end{aligned}$$

so as topological spaces, these are the unit 0-sphere  $S^0$ , the unit 1-sphere  $S^1$ , and the unit 3-sphere  $S^3$ , respectively. If  $A = Q \in O(n)$  or  $A = U \in U(n)$ , then

$$\det(A)^* = \det(A^*) = \det(A^{-1}) = \det(A)^{-1}$$

so  $\det(Q) \in O(1)$  and  $\det(U) \in U(1)$ . The subgroups

$$\begin{aligned} SO(n) &= \{Q \in O(n) \mid \det(Q) = 1\} \subset O(n) \\ SU(n) &= \{U \in U(n) \mid \det(U) = 1\} \subset U(n) \end{aligned}$$

are called the special orthogonal group and the special unitary group, respectively. There is no useful determinant of quaternionic square matrices, because the division ring  $\mathbb{H}$  is noncommutative.<sup>4</sup>

We embed  $\mathbb{C}$  in  $\mathbb{H}$  as the subfield  $L \subset \mathbb{H}$  consisting of all quaternions of the form  $q = a + ib$ . The subfield  $L \subset \mathbb{H}$  is a maximal subfield, and if also  $L' \subset \mathbb{H}$  is a maximal subfield, then there exists  $q \in \mathbb{H}$  such that  $L' = qLq^{-1}$ . So every maximal subfield of  $\mathbb{H}$  is isomorphic to  $\mathbb{C}$ , but the embedding of  $\mathbb{C}$  as a maximal subfield in  $\mathbb{H}$  is only well-defined, up to conjugation. Left multiplication by  $q = z_1 + jz_2 \in \mathbb{H}$  defines an  $L$ -linear map  $\lambda(q) : \mathbb{H} \rightarrow \mathbb{H}$ , and hence, a ring homomorphism

$$\mathbb{H} \xrightarrow{\lambda} \mathrm{End}_L(\mathbb{H}).$$

Since  $\mathbb{H}$  is a division ring, the kernel of  $\lambda$  is either  $\{0\}$  or  $\mathbb{H}$ , and since  $\lambda(1) = \mathrm{id}_{\mathbb{H}} \neq 0$ , we conclude that the kernel is  $\{0\}$ . Let us choose the basis  $(1, j)$  of  $\mathbb{H}$  as a right  $L$ -vector space. This defines a ring isomorphism

$$\mathrm{End}_L(\mathbb{H}) \xrightarrow{\mu} M_2(L)$$

<sup>4</sup>The best one has is the Dieudonné determinant in  $K_1(\mathbb{H}) = (\mathbb{R}_{>0}, \cdot)$ .

that to an  $L$ -linear map  $f: \mathbb{H} \rightarrow \mathbb{H}$  assigns the matrix  $A = \mu(f) \in M_2(L)$  that represents  $f: \mathbb{H} \rightarrow \mathbb{H}$  with respect to the basis  $(1, j)$ . The calculation

$$\begin{aligned} q \cdot 1 &= (z_1 + jz_2) \cdot 1 = 1 \cdot z_1 + j \cdot z_2 \\ q \cdot j &= (z_1 + jz_2) \cdot j = j \cdot z_1^* - 1 \cdot z_2^* \end{aligned}$$

shows that the composite ring homomorphism

$$\mathbb{H} \xrightarrow{f=\mu \circ \lambda} M_2(L)$$

takes the quaternion  $q = z_1 + jz_2$  to the matrix

$$f(q) = \begin{pmatrix} z_1 & -z_2^* \\ z_2 & z_1^* \end{pmatrix}.$$

A map between topological groups is an isomorphism if and only if it is both an isomorphism of groups and a homeomorphism of topological spaces.

**Proposition 16.** *The ring homomorphism  $f: \mathbb{H} \rightarrow M_2(L)$  induces an isomorphism of topological groups  $h: \mathrm{Sp}(1) \rightarrow \mathrm{SU}(2)$ .*

*Proof.* We have  $q^* = (z_1 + jz_2)^* = z_1^* + z_2^*j^* = z_1^* - jz_2$ . Therefore,

$$q^*q = (z_1^* - jz_2)(z_1 + jz_2) = z_1^*z_1 + jz_1z_2 - jz_2z_1 + z_2^*z_2 = z_1^*z_1 + z_2^*z_2,$$

which shows that  $q \in \mathrm{Sp}(1)$  if and only if  $f(q) \in \mathrm{SU}(2)$ . So the ring homomorphism  $f: \mathbb{H} \rightarrow M_2(K)$  restricts to a group homomorphism  $h: \mathrm{Sp}(1) \rightarrow \mathrm{SU}(2)$ , which is continuous because  $f: \mathbb{H} \rightarrow M_2(K)$  is continuous. We wish to prove that  $h$  is both an isomorphism of groups and a homeomorphism of spaces, and to do so, it suffices to show that  $h$  is a bijection. Indeed, the inverse map of a bijective group homomorphism is automatically a group homomorphism, and the inverse map of a continuous bijection from a compact space such as  $\mathrm{Sp}(1)$  to a Hausdorff space such as  $\mathrm{SU}(2)$  is automatically continuous. Now, the map  $h$  is injective, because the map  $f$  is injective, and the map  $h$  is surjective because, if

$$U = \begin{pmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{pmatrix} \in \mathrm{SU}(2),$$

then  $U = f(q)$  with  $q = z_{11} + jz_{21}$ . This completes the proof.  $\square$

Let  $k = \mathbb{R}$ ,  $\mathbb{C}$ , or  $\mathbb{H}$ . We define the Hilbert–Schmidt norm of  $A \in M_n(k)$  by

$$\|A\| = \sqrt{\mathrm{tr}(A^* A)}.$$

It satisfies  $\|A + B\| \leq \|A\| + \|B\|$  and  $\|AB\| \leq \|A\|\|B\|$  for all  $A, B \in M_n(k)$ , so in particular, the exponential series

$$\exp(A) = \sum_{n=0}^{\infty} \frac{A^n}{n!}$$

converges absolutely. If  $[A, B] = AB - BA = 0$ , then

$$\exp(A + B) = \exp(A) \exp(B),$$

but in general the left-hand side and the right-hand side are different.<sup>5</sup> Hence, the matrix  $\exp(A)$  is invertible with inverse  $\exp(-A)$ , so we get a map

$$M_n(k) \xrightarrow{\exp} \mathrm{GL}_n(k).$$

Locally on  $M_n(k)$ , this map is a diffeomorphism. For it is a smooth map (considered as map between open subsets of  $\mathbb{R}^m$ ) with derivative  $\mathrm{id}: M_n(k) \rightarrow M_n(k)$ , so the inverse function theorem shows that it is a diffeomorphism locally on  $M_n(k)$ .

If  $G \subset \mathrm{GL}_n(k)$  is one of the classical groups, then we define its Lie algebra to be the subset  $\mathfrak{g} \subset M_n(k)$  consisting of all matrices  $A$  such that  $\exp(tA) \in G$ , for all  $t \in \mathbb{R}$ . It is a real subspace of  $M_n(k)$ .

**Proposition 17.** *The Lie algebras of the classical groups are given by*

$$\mathfrak{o}(n) = \{A \in M_n(\mathbb{R}) \mid A^* + A = 0\}$$

$$\mathfrak{u}(n) = \{A \in M_n(\mathbb{C}) \mid A^* + A = 0\}$$

$$\mathfrak{sp}(n) = \{A \in M_n(\mathbb{H}) \mid A^* + A = 0\}$$

$$\mathfrak{so}(n) = \{A \in \mathfrak{o}(n) \mid \mathrm{tr}(A) = 0\}$$

$$\mathfrak{su}(n) = \{A \in \mathfrak{u}(n) \mid \mathrm{tr}(A) = 0\}$$

*Proof.* We prove the statements for  $\mathfrak{u}(n)$  and  $\mathfrak{su}(n)$ ; the proofs in the remaining cases are analogous. If  $A \in \mathfrak{u}(n)$ , then for all  $t \in \mathbb{R}$ , we have

$$\exp(tA^*) = \exp(tA)^* = \exp(tA)^{-1} = \exp(-tA),$$

and since the exponential map is a local diffeomorphism, this implies that  $A^* = -A$ . Similarly, if  $A \in \mathfrak{su}(n)$ , then we have in addition that for all  $t \in \mathbb{R}$ ,

$$\exp(nt \mathrm{tr}(A)) = \exp(\mathrm{tr}(tA)) = \det(\exp(tA)) = 1.$$

Since the exponential map is a local diffeomorphism, this implies that  $\mathrm{tr}(A) = 0$ .  $\square$

*Example 18.* The Lie algebra  $\mathfrak{sp}(1) \subset \mathbb{H}$  is the 3-dimensional real subspace of purely imaginary quaternions. One can show that  $\exp: \mathfrak{sp}(1) \rightarrow \mathrm{Sp}(1)$  is given by

$$\exp(v) = \cos|v| + \frac{v}{|v|} \sin|v|,$$

where  $|v| = \sqrt{v^*v}$ .

**Lemma 19.** *Let  $G \subset \mathrm{GL}_n(k)$  be one of the classical groups, and let  $\mathfrak{g} \subset M_n(k)$  be its Lie algebra. If  $g \in G$  and  $A \in \mathfrak{g}$ , then  $gAg^{-1} \in \mathfrak{g}$ .*

*Proof.* Indeed, for all  $t \in \mathbb{R}$ , we have

$$\exp(tgAg^{-1}) = \exp(gtAg^{-1}) = g \exp(tA)g^{-1},$$

so if  $\exp(tA) \in G$  and  $g \in G$ , then also  $\exp(tgAg^{-1}) \in G$ .  $\square$

**Definition 20.** The adjoint representation of the classical group  $G \subset \mathrm{GL}_n(k)$  on its Lie algebra  $\mathfrak{g} \subset M_n(k)$  is the real representation

$$G \xrightarrow{\mathrm{Ad}} \mathrm{GL}(\mathfrak{g})$$

defined by  $\mathrm{Ad}(g)(A) = gAg^{-1}$ .

---

<sup>5</sup> The difference is given by the Baker–Campbell–Hausdorff formula.

We consider the adjoint representation

$$\mathrm{Sp}(1) \xrightarrow{\mathrm{Ad}} \mathrm{GL}(\mathfrak{sp}(1))$$

of the compact symplectic group  $\mathrm{Sp}(1)$  on its Lie algebra  $\mathfrak{sp}(1)$  of purely imaginary quaternions, or equivalently, the adjoint representation

$$SU(2) \xrightarrow{\mathrm{Ad}} \mathrm{GL}(\mathfrak{su}(2))$$

of the special unitary group  $SU(2)$  on its Lie algebra  $\mathfrak{su}(2)$  given by the real vector space of complex  $2 \times 2$ -matrices that are skew-hermitian and traceless. The map that to  $v \in \mathfrak{sp}(1)$  assigns  $|v| = \sqrt{v^*v}$  is a norm on the real vector space  $\mathfrak{sp}(1)$ , and it determines a real inner product  $\langle -, - \rangle$  on  $\mathfrak{sp}(1)$  given by<sup>6</sup>

$$\langle v, w \rangle = \frac{1}{2}(|v + w|^2 - |v|^2 - |w|^2).$$

We claim that the adjoint representation takes values in the subgroup

$$SO(\mathfrak{sp}(1)) \subset \mathrm{GL}(\mathfrak{sp}(1))$$

of linear isometries with respect to  $\langle -, - \rangle$  that have determinant 1. To see this, we first note that since  $\mathrm{Ad}(q)(v) = qvq^{-1} = qvq^*$ , we have

$$(qvq^*)^*qvq^* = qv^*q^*qvq^* = qv^*vq^* = v^*v,$$

where the last identity holds, because  $v^*v$  is an element of the center  $\mathbb{R}$  of  $\mathbb{H}$ . This shows that  $\mathrm{Ad}(q)$  is a linear isometry with respect to  $\langle -, - \rangle$ . Therefore, the adjoint representation induces a group homomorphism

$$\mathrm{Sp}(1) \xrightarrow{\mathrm{Ad}} O(\mathfrak{sp}(1))$$

to the subgroup  $O(\mathfrak{sp}(1)) \subset \mathrm{GL}(\mathfrak{sp}(1))$  of linear isometric isomorphisms. It is clearly a continuous map, and since  $\mathrm{Sp}(1)$  is connected, its image is fully contained in one of the two components of  $O(\mathfrak{sp}(1))$ . But  $\mathrm{Ad}(1)$  is the identity map of  $\mathfrak{sp}(1)$ , which has determinant 1, so we conclude that  $\mathrm{Ad}(q)$  takes values in  $SO(\mathfrak{sp}(1))$  as claimed.

**Theorem 21.** *The adjoint representation induces a group homomorphism*

$$\mathrm{Sp}(1) \xrightarrow{\mathrm{Ad}} SO(\mathfrak{sp}(1))$$

which is surjective with kernel  $\{\pm 1\}$ .

We first prove two lemmas. If  $V$  is a real vector space with norm  $\|-\|$ , then we write  $S(V) = \{v \in V \mid \|v\| = 1\} \subset V$  for the unit sphere.

**Lemma 22.** *If  $H \subset SO(\mathfrak{sp}(1))$  is a subgroup such that the restriction to  $H$  of the standard action by  $SO(\mathfrak{sp}(1))$  on  $S(\mathfrak{sp}(1))$  is transitive and such that there exists  $u \in S(\mathfrak{sp}(1))$  with  $SO(\mathfrak{sp}(1))_u \subset H$ , then  $H = SO(\mathfrak{sp}(1))$ .*

*Proof.* Given  $g \in SO(\mathfrak{sp}(1))$ , we can find  $h \in H$  such that  $h \cdot u = g \cdot u$ . But then  $h^{-1}g \cdot u = u$ , so  $h^{-1}g \in SO(\mathfrak{sp}(1))_u \subset H$ , and hence,  $g = h \cdot h^{-1}g \in H$ .  $\square$

**Lemma 23.** *For all  $v \in S(\mathfrak{sp}(1))$ , there exists  $g \in \mathrm{Sp}(1)$  such that*

$$\mathrm{Ad}(g)(v) = i.$$

---

<sup>6</sup>Writing  $v = ib + jc + kd$ , we have  $|v|^2 = b^2 + c^2 + d^2$ .

*Proof.* We will use the spectral theorem for normal operators on finite dimensional complex vector spaces. The ring homomorphism  $f: \mathbb{H} \rightarrow M_2(\mathbb{C})$  that we considered above induces isomorphisms  $h: \mathrm{Sp}(1) \rightarrow SU(2)$  and  $h': \mathfrak{sp}(1) \rightarrow \mathfrak{su}(2)$ . It maps  $v \in \mathfrak{sp}(1)$  to  $X = h'(v) \in \mathfrak{su}(2)$  with  $\det(X) = v^*v = 1$ . Since the matrix  $X$  is skew-hermitian, it is normal.<sup>7</sup> Therefore, by the spectral theorem for normal matrices, there exists  $P \in U(2)$  such that  $PXP^{-1} = \mathrm{diag}(\lambda_1, \lambda_2)$ , where  $\lambda_1$  and  $\lambda_2$  are the eigenvalues of  $X$ . Since  $X$  is skew-hermitian and  $\det(X) = 1$ , one shows that  $\lambda_1 = i$  and  $\lambda_2 = -i$ . So we have  $P \in U(2)$  with

$$PXP^{-1} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} = h'(i).$$

Since  $P \in U(2)$ , we have  $\det(P) \in U(1)$ , so we can choose  $z \in U(1)$  such that  $z^2 = \det(P)$ . Then  $U = z^{-1}P \in SU(2)$ , and we still have  $UXU^{-1} = h'(i)$ . Hence, if  $g \in \mathrm{Sp}(1)$  is the unique element with  $h(g) = U$ , then  $\mathrm{Ad}(g)(v) = i$ .  $\square$

*Proof of Theorem 21.* We apply Lemma 22 to the subgroup  $H \subset SO(\mathfrak{sp}(1))$  given by the image of  $\mathrm{Ad}: \mathrm{Sp}(1) \rightarrow SO(\mathfrak{sp}(1))$ . Lemma 23 shows that  $H$  acts transitively on  $S(\mathfrak{sp}(1))$ , and we proceed to show that for  $SO(\mathfrak{sp}(1))_i \subset H$ . The matrix that represents a general element of the isotropy subgroup  $SO(\mathfrak{sp}(1))_i$  with respect to the basis  $(i, j, k)$  of  $\mathfrak{sp}(1)$  has the form

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$$

for some  $\theta \in \mathbb{R}$ . We calculate that the matrix that represent  $\mathrm{Ad}(e^{it})$  with respect to the basis  $(i, j, k)$  of  $\mathfrak{sp}(1)$  is given by

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos 2t & -\sin 2t \\ 0 & \sin 2t & \cos 2t \end{pmatrix}.$$

This shows that  $SO(\mathfrak{sp}(1))_i \subset H$ , and therefore, we conclude from Lemma 22 that  $H = SO(\mathfrak{sp}(1))$  as stated.

Finally, if  $\mathrm{Ad}(g) = \mathrm{id}$ , then, in particular,  $\mathrm{Ad}(g) \in SO(\mathfrak{sp}(1))_i$ , so  $g = e^{it}$ . But if  $\mathrm{Ad}(e^{it}) = \mathrm{id}$ , then  $e^{it} = \pm 1$ , so  $\ker(\mathrm{Ad}) = \{\pm 1\}$  as stated.  $\square$

**Corollary 24.** *The map induced by the adjoint representation,*

$$\mathrm{Sp}(1)/\{\pm 1\} \xrightarrow{\overline{\mathrm{Ad}}} SO(\mathfrak{sp}(1)),$$

*is an isomorphism of topological groups.*

*Proof.* We have not explicitly specified the topologies on these groups before, so we do that now. We have identified both  $\mathrm{Sp}(1)$  and  $SO(\mathfrak{sp}(1))$  with subsets of  $M_2(\mathbb{C})$ , and we give both the respective subspace topologies induced from the metric topology on  $M_2(\mathbb{C})$ . Finally, we give  $\mathrm{Sp}(1)/\{\pm 1\}$  the quotient topology induced from the topology on  $\mathrm{Sp}(1)$ . As a topological space,  $\mathrm{Sp}(1)/\{\pm 1\}$  is compact, because  $\mathrm{Sp}(1)$  is compact, and  $SO(\mathfrak{sp}(1))$  is Hausdorff, because the metric topology on  $M_2(\mathbb{C})$  is Hausdorff. So it suffices to show that  $\overline{\mathrm{Ad}}$  is a group homomorphism and a continuous bijection. Theorem 21 shows that it is a group isomorphism, so it

<sup>7</sup> Indeed,  $X^*X = (-X)X = X(-X) = XX^*$ .

only remains to show that the map  $\overline{\text{Ad}}$  is continuous. By the universal property of the quotient topology, the map  $\overline{\text{Ad}}$  is continuous if and only if the map  $\text{Ad}$  is continuous. And by the universal property of the subspace topology, the map  $\text{Ad}$  is continuous if and only if the map

$$\text{Sp}(1) \xrightarrow{\widetilde{\text{Ad}}} \text{End}_{\mathbb{R}}(M_2(\mathbb{C}))$$

defined by  $\widetilde{\text{Ad}}(g)(X) = h(g)Xh(g)^{-1}$  is continuous. This, in turn, follows from the definition of matrix multiplication and from Cramer's formula for the inverse of a matrix.  $\square$

If  $G$  is a topological group, then we write  $\text{Rep}_{\mathbb{C}}(G)$  for the category, whose objects are complex representations  $(V, \pi)$  of  $G$  such that  $\pi: G \rightarrow \text{GL}(V)$  is continuous, and whose morphisms are intertwining  $\mathbb{C}$ -linear maps. Restriction along the continuous group homomorphism  $\text{Ad}: \text{Sp}(1) \rightarrow SO(\mathfrak{sp}(1))$  defines a functor

$$\text{Rep}_{\mathbb{C}}(SO(\mathfrak{sp}(1))) \xrightarrow{\text{Ad}^*} \text{Rep}_{\mathbb{C}}(\text{Sp}(1)),$$

and Corollary 24 shows that this functor is a fully faithful embedding and that its essential image are the continuous complex representations  $(V, \pi)$  of  $\text{Sp}(1)$  with the property that  $\pi(-1) = \text{id}_V$ .

Another consequence of Corollary 24 is that, as a topological space,  $SO(3)$  is homeomorphic to the real projective space  $\mathbb{P}^3(\mathbb{R})$ . Indeed, as a topological space  $\text{Sp}(1)$  is homeomorphic to  $S^3$ , and the action of the subgroup  $\{\pm 1\} \subset \text{Sp}(1)$  by left multiplication is free.