REPRESENTATIONS OF COMPACT GROUPS

We say that a topological group G is a compact group if its underlying space
is compact and Hausdorff. The classical groups are all compact topological groups
in this sense. It turns out that the theory of continuous finite dimensional complex
representations of compact groups is completely analogous to the theory of finite
dimensional complex represenations of finite groups, except that there will typically
be a countably infinite number of non-isomorphic irreducible such representations.
We first define the generalization to compact groups of the regular representation
for finite groups. It will a representation on a complex Hilbert space L?(G), the
definition of which requires some input from analysis, which we will assume.

One can show that there exists a Borel measure p on G that is both left-invariant
and right-invariant in the sense that for every Borel subset A C G and g € G.*

(g - A) = p(A) = p(4-g),
and regular in the sense that for every Borel subset A C G,
w(A) =inf{u(U) | ACU, U C G open} = sup{u(K) | K C A compact}.

Moreover, such a measure, which is called a Haar measure, is unique up to scaling.
In particular, there exists a unique Haar measure on G that is a probability measure
in the sense that u(G) = 1.

Let C°(G,R) to be the (right) real vector space given by the set consisting of all
continuous functions ¢: G — R equipped with pointwise vector sum and pointwise
scalar multiplication. Given a Haar measure p on GG, we define a linear map

Co(G,R) >R
as follows. Given ¢ € C°(G,R), we choose a real number 0 < d < 1 and define
Apr(@)={z€G|nd" <yp(z)<(n+1)d"} CQG,

for all integers n and positive integers r. Since ¢p: G — R is continuous and G
compact, the subset ¢(G) C R is compact and therefore bounded. It follows that
for every positive integer r, the subset A, ,(¢) C G is non-empty for only finitely
many integers n. It is a Borel subset, and hence, we may form the sum

Y oneznd w(Anr(9)) € R
One may show that the limit

I(p) = limy00 3 ez nd" 1(Anr () € R

exists and is independent of the choice of 0 < d < 1. Finally, one may show that
the function I: C°(G,R) — R defined in this way is indeed linear.

Similarly, let C°(G, C) be the (right) complex vector space given by the set of
all continuous complex functions ¢: G — C equipped with pointwise vector sum

1 More generally, if G is locally compact, then there exists a left-invariant, but not necessarily
right-invariant, measure on G.
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2 REPRESENTATIONS OF COMPACT GROUPS

and scalar multiplication. Let f: R — C be the canonical inclusion. Then we have
the map of right real vector spaces

CO(G» R) — f*CO(Gv (C)
that to ¢: G — R assigns fop: G — C, and its adjunct map
f*C°(G,R) = C°(G,R) ®g C —— CY(G, C)

is an isomorphism of complex vector spaces. Hence, we obtain a C-linear map

(G, C) - ¢
defined to be the adjunct of the composite R-linear map

(G, R) =R t.C.

We will only consider C-valued continuous functions on G, so we will abbreviate
and write C°(G) instead of C°(G, C) and I(¢) or [, f(x)du(z) instead of Ic(p).

Given ¢,9 € CY(Q), we define p1» € C°(G) to be the pointwise product of ¢
and v, and we define ¢* to be the pointwise complex conjugate of ¢. Since the map
I: C%(@) — C is C-linear, it follows immediately that the map

<_a_>
R

CO(G) x C°(G) C

defined by (@, 1) = I(p*1) is a hermitian form. Moreover, this map is a hermitian
inner product. Indeed, if ¢ € C°(G) and (¢, ¢) = I(|¢]?) = 0, then ¢ = 0.

If (V,(—,—)) is a complex vector space with hermitian inner product, then the
inner product gives rise to a metric d: V' x V' — R defined by

d(v,w) = /(v —w,v —w),

and we say that (V, (—, —)) is a Hilbert space if the metric space (V, d) is complete.”
If both (U, {(—,—)v) and (V,{(—, —)y) are complex vector spaces with hermitian
inner products, then we say that a linear map f: V — U is Cauchy-continuous if
for every sequence v: Z>o — V that is Cauchy with respect to dy, the sequence
fowv:Zso — U is Cauchy with respect to dy.” Let Hermg be the category, whose
objects are the complex vector spaces with hermitian inner products, and whose
morphisms are the Cauchy-continuous linear maps between these, and let Hilb¢ be
the full subcategory of Hilbert spaces. In this situation, there is an adjunction

VAN

K3
Hermc ; * Hilbg,
in

where the right adjoint functor i, is the canonical inclusion, and where the left
adjoint functor " takes a complex vector space with hermitian inner product

2 This means that every sequence in V that is Cauchy with respect to d converges with respect
to d. A sequence v: Z>g — V is Cauchy with respect to d, if for all € > 0, there exists N € Zxq
such that d(v;,v;) < e_, for all 4,5 > N, and it converges with respect to d, if there exists v %
such that for all € > 0, there exists N € Z>( such that d(v,v;) <, for all i > N.

3 Every Cauchy-continuous map between two metric spaces is continuous, and every continuous
map between two complete metric spaces is Cauchy-continuous.
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(U, (=, —)uv) to a Hilbert space (V, (—, —)v) such that the underlying metric space
(V,dy) is the completion of the metric space (U, dy). The unit map

n = . .
(U7 <_a _>U) —_— (U7 <_7 _>f]’) = (Z/\ © ZA)(Uv <_a _>U)
is injective and its image n(U) C U is a dense subset of the metric space (fidﬁ).
In the following, we will omit the hermitian inner products from the notation.

We return to the complex vector space with hermitian inner product C°(G). It
is not a Hilbert space, unless G is finite, so we define the Hilbert space

o —

17(G) = CO(@)

to be its completion. As just explained the unit map
(@) —1= L(G)

is injective and its image is dense in L?(G). Hence, every element of L?(G) can be
written, non-canonically, as a limit of a Cauchy sequence of continuous C-valued
functions on G, but a general element of L?(G) is not a C-valued function on G,
unless G is finite. In particular, the value “f(x)” of f € L?(G) at z € G is not
meaningful.” We will see below that the Hilbert space L?(G) is separable in the
sense that it admits a countably dimensional dense subspace.

Lemma 1. The map I: C°(G) — C is Cauchy-continuous.

Proof. We must show that if the sequence ¢: Z>¢ — C°(G) is Cauchy, then so is
the sequence I o ¢: Z>o — C. It suffices to show that for all ,¢ € C%(Q),

(@) = I()| = [I(e — )| < I(|e — ¥I),
which follows immediately from the definition of I: C°(G) — C. O

Since C is complete, we conclude that I: C°(G) — C extends uniquely to a
continuous, or equivalently, Cauchy-continuous linear map

L2(G) > cC.

Ezample 2. If G is a finite group, which we consider as a compact topological group
with the discrete topology, then the Haar probability measure on G is given by the
normalized counting measure that to A C G assigns u(A4) = |A|/|G|. It follows that
the corresponding integral I: CY(G) — C is given by

I(f) = |G|71 ZmEG f(x)a
so we find that L?(G) = C°(G) = C[G].

We wish to extend the definition of the two-sided regular representation from
finite groups to compact groups. So let G be a compact topological group. Given
(g1,92) € G x G and ¢ € C°(G), the formula

Reg(g1,92) () () = (g5 'wg1)

4The linear map evy: CO(G) — C defined by evs(p) = @(z) is not Cauchy-continuous, and
hence, does not extend to a map evy: L?(G) — C. However, it is possible to identify L?(G) with
the quotient of the complex vector space consisting of the functions f: G — C that are Haar
measurable and square-integrable by the subspace of functions that are zero almost everywhere.
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defines an element Reg(g1, g2)(p) € C°(G). Moreover, since a Haar measure on G
is both left-invariant and right-invariant, the map

Re, s
OO(G) g(91,92) CO (G)
is a linear isometry with respect to (— —). Indeed, we have
Reg(g1.92)(0)II° = [glelgz ' zg1) Pdua) = [ le(@)Pdu(a) = [le]>.

In particular, it is Cauchy-continuous, and therefore7 it 1nduces a map

Reg(91,92)

L*(G) L*(G)

which is a linear isometry with inverse Reg(g; ', g5 '). This defines a map

G x G- U(2(@))

to the group of linear isometric isomorphisms of L?(G).” We wish to say that this
is a map of topological groups, so we much define a topology on U(L?(G)) and
show that the map is continuous. It turns out that the appropriate topology on
U(L*(@)) is the so-called strong operator topology.®

Proposition 3. The two-sided reqular representation
R
G x G—== U(L*(Q))
is continuous with respect to the strong operator topology.

Proof. The strong operator topology has the property that the map Reg in question
is continuous if and only if for every ¢ € L?(G), the composite map

R e
G x G —25 U(L*(G)) —2— L*(G)
is continuous. Let us write Reg,, for this map. Since G x G is a topological group,
it suffices to prove that this map is continuous at (g1, g2) = (e, e).
We first let ¢ € C°(G) and prove that Reg,, is continuous at (e,e). We have

IReg, (g1, 92) — Reg, (e, €)[1* = [lelgs 'wg1) — o(a)Pdu(x)
and wish to prove that this quantity goes to 0 as (g1, g2) — (e, e). Since both ¢ and
multiplication and inversion in G are continuous, we have every x € G,
lim (g, g,) (e.0) |9 (95 ' 291) — p(@)* = 0.

Moreover, for all z € G, the integrand is dominated by

(g2 ' wg1) — p()]* < 4-sup{le(h)] | h € G},
so by the dominated convergence theorem for the integral, we conclude that

(g, g,)(ee) Sl (95 ' g1) — () Pdp(z) = 0
as desired.

5 Traditionally, linear isometric isomorphisms of a Hilbert space h are called unitary operators,
and therefore, we write U(h) for the group consisting of these operators.

6 The uniform operator topology, which is given by the operator norm, is stronger than the
strong operator topology. It turns out that it is too strong for our purposes, since, even for
G =U(1), the map Reg is not continuous with respect to this topology.
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We next prove that for any ¢ € L?(G), the map Reg,, is continuous at (e, e).
Given € > 0, we choose ¢, € C°(G) such that ||¢ — ¢c|| < €, which is possible,
because C°(Q) is dense in L?(G). Now

[Reg,(g1,92) — ¢l < [[Reg,(g1,92) — Reg,,_(g1,92) |l
+ [Reg,, (91, 92) — @ell + [lee — ¢

=2[¢ = @ell + [Regy, (91, 92) — @

<2+ |[Reg, (91, 92) — @ell;
and by the first case, there exists an open neighborhood (e,e) € U C G x G such
that [|[Reg,,_ (g1, 92) — ¢c|l <€, for all (g1,92) € U. So we conclude that

[Reg, (g1, 92) — ¢l < 3e,
for all (g1, g2) € U. This proves that Reg,, is continuous at (e, e). O

If (V,7) is a finite dimensional complex representation of GG, then we define the
associated space of matrix coefficients M (7) to be the image of the map

VeV, 00G) c LAG)
defined by pr(v ® h)(g) = h(mw(g)(v)). One verifies immediately that it intertwines
between 7 X 7* and Reg, so that we obtain a map
X L RegM(,r)

of continuous representations of G x G. It is an isomorphism, if 7 is an irreducible
representation of GG, because then X 7* is an irreducible representation of G x G.

Lemma 4. Let G be a compact topological group, let w1 and mo be irreducible finite
dimensional complex representations of G, and let M (1), M (m2) C L?(G) be their
subspaces of matriz coefficients.

(1) If m =~ ma, then M(m) = M (m2).

(2) If my % ma, then M(m1) L M (ms).

Proof. To prove (1), we let Vi and V, be the representation spaces of m; and 7o, re-
spectively, and let h: V; — V5 be a linear isomorphism that is intertwining between
w1 and 7. In this situation, the diagram

V1 ® ‘/,2* id @h* ‘/1 ® Vl*

lh@id J{H’ﬂ'l

VeV — 2 12(Q)
commutes, and therefore,
M(m1) = im(pr, ) = im(pr, © (Id®R")) = im(pix, o (h @ 1d)) = im(pir,) = M (72).
To prove (2), we consider the composition

p

M(my) —— L*(G)

M (m2)

of the canonical inclusion of M (1) and the orthogonal projection onto M (m3). The
map ¢ is intertwining between Reg,;(,,) and Reg, since M (m1) is a Reg-invariant
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subspace, and the map p is intertwining between Reg and Regy(r,), since Reg is a
unitary representation. Therefore, the composite map p o is intertwining between
Regas(r,) and Regps(r,), which are non-isomorphic irreducible finite dimensional
complex representations of G X G, so by Schur’s lemma, p o = 0 as stated. O

The theorem of Peter and Weyl states that if G is a compact topological group,
then the two-sided regular representation of G X G decomposes as the completed
direct sum of the spaces of matrix coefficients, one for each isomorphism class of
irreducible finite dimensional continuous complex representations of G.

Theorem 5 (Peter—-Weyl). Let G be a compact topological group, and let G be the
set of isomorphism classes of finite dimensional complex representations of G. For
every o € G, let (V,,7m,) be a representative of the class o. The map

—

m
@Geé e X 75 —— Reg,

whose oth component is given by pr (v ® h)(g) = h(7s(g)(v)), is an isomorphism
of continuous representations of G x G.

Proof. We will only prove the theorem for compact groups G that admit a faithful
continuous representation p: G — GL,,(C); for a proof in the general case, we refer
to [1, Theorem 5.4.1]. By Lemma 4, the canonical map

D,eq M(ro) — C°(G)

is injective, and we proceed to prove that its image is dense with respect to the
L2-norm. To this end, we let a;; = p,(e;®@e}) € C°(G) be the matrix coefficients of
p: G — GL,(C) and consider the sub-C-algebra C[G] C C°(G) given by the image
of the unique C-algebra homomorphism

C[Xij, Yij | 1 <d,j < n] — C°(G)

that to X;; and Y; ; assign a;; and a;;. We claim that C[G] C C°(G) is dense with
respect to the L?-norm. Indeed, by the Stone-Weierstrass theorem, C[G] C C°(G)
is dense with respect to the supremum norm ||—||~, and since G has finite volume
1(G), the calculation

lell3 = Jolo(@)Pdu(@) < [llolZdu(z) = llelZn(G)
shows that C[G] C C°(G) is also dense with respect to the L?-norm.
Now, for all m > 0, we consider the finite dimensional subspace
Fil,, C[G] C C[G]
given by the image by the C-algebra homomorphism
C[x

i, Yig |1 <4,j <n] —— C°%G)

of the subspace of polynomials of degree < m. It is Reg-invariant, since the matrix
coefficients a;; transform linearly under left and right translation on G, and
UmZO Fil,, C[G] = C[G].

We consider the representation R,,: G — GL(Fil,, C[G]) given by the restriction
of the right regular representation of G on L?(G) to this subspace. Since it is
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finite dimensional, it decomposes as a direct sum of irreducible finite dimensional
representations of G, so by Lemma 4, the inclusion M (R,,) — C°(G) factors as

M(R,,) — B, ca M (1) —— C°(G).

We define e: C°(G) — C to be the linear map given by ¢(¢) = p(e) and consider
the map v, : Fil,, C[G] = M(R,,) given by v, (@) = ur,, (¢ ® €). The calculation

Vm(©)(9) = 1R, (¢ @ €)(g) = (Rm(9)(¢)) = Bm(g)(¢)(e) = ¢(e- g) = ¢(g)
shows that the composite map

Fil,, C[G] =" M(Ry,) —— @, M (1,) — C°(G)

is equal to the canonical inclusion, and hence, the canonical inclusion of C[G] into
C°(@) factors as a composition

ClG] = U,nso Filn C[G] —— D, g M (15) —— C(@).

ceG

Since the image of the composite map is dense with respect to the L?-norm, so is
the image of the right-hand map. This completes the proof. O

Remark 6. Let G be a linear compact topological group, let p: G — GL,(C) be
a faithful continuous representation, and let C[G] C C°(G) be the subalgebra of
polynomial functions on G defined in the proof of Theorem 5. We claim that

ClC] = @, .5 M(ms) C COG).

For otherwise, there exists 7 € G such that M (7,) ¢ C|G], and since C[G] is a direct
sum of irreducible finite dimensional representations, it follows from Lemma 4 that
M (7;) L C[G]. But this contradicts the fact that C[G] C @, g M(7,) is dense.

Remark 7. In general, a unitary representation of a topological group G is defined
to be a pair (h,7) of a Hilbert space h and a continuous group homomorphism

G ——=U(h)

from G to the group U(h) of linear isometric isomorphisms of § equipped with the
strong operator topology. As a consequence of the Peter—Weyl theorem, one can
show that for G compact, every such representation admits a finite dimensional
m-invariant subspace V' C b; for a proof, see [1, p. 301]. Hence, every irreducible
unitary representation of a compact topological group G is finite dimensional. By
contrast, locally compact topological groups such as G = GL,(C) that are not
compact have irreducible unitary representations that are infinite dimensional.

Ezample 8. Welet G = U(1) and let 7: G — GL(V') be the standard representation
on V = C. For every n > 0, we have the representation

T = Symg(7)

of G on Sym¢ (V). It is an irreducible representation, because the complex vector
space Symg¢ (V) is 1-dimensional. Let (e1) be the standard basis of V' so that (e])
is a basis of Symg (V). Then for z € G, we have

ma(2)(e]) = (e12)" = ey'2".
The dual representation 7_,, = 7, is also 1-dimensional, and hence, irreducible, and

T-n(2)((e1)") = ((e12)")" = (e1)"2z7".
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So for all m,n € Z, we have 7, ~ 7, if and only if m = n. Up to isomorphism,
these are all irreducible finite dimensional continuous complex representations of
G. Hence, by the Peter—Weyl theorem, the map of unitary G x G-representations

—~ u
*

@neZ Tn IX Th Reg

is an isomorphism.

Ezample 9. Let G = SU(2) and let m: G — GL(V) be the standard representation
on V = C2. For every n > 0, we have the representation

T = Symg ()
of G on the (n + 1)-dimensional complex vector space Symg¢ (V). Let (e1, e2) be the
standard basis of V so that (e e} | 0 < i < n) is a basis of Symg(V). We let
f:U(1) = SU(2) be the group homomorphism defined by f(z) = diag(z,271) and
consider the representation f*(m,) of U(1). For z € U(1), the calculation

Tu(F(2)) (€5 eh) = (e22)" eaz 1) = 7 Tehzn

shows that the C-linear isomorphism

®ogi§n Symgim(c) RN Symg(V),

whose ith component is given by h;(v'"2") = e} "ebv % is intertwining with

respect to Po<i<, Tn—2i and f*(m,). Therefore, every f*(m,)-invariant subspace
of Symg (V') is of the form W = h(D,.s Sym¢ > (C)) with S € {0,1,...,n}. In
particular, if z = Y .,., el 'ebr; € W and x; # 0, then e} ‘e} € W.

If W C Symg(V) is a non-zero m,-invariant subspace, then W is in particular
an f*(m,)-invariant subspace. Hence, there exists 0 < i < n such that e} 'e} € W.

‘We now consider
1 1
g= <0 1) eG
and first calculate
g-efTleh = et e ea)' = e + X, (el e,
which shows that e € W, and next calculate
g el =(e1+e)" = Zogjgn (?)e?_]eé,

which shows that e?ijeé € W for all 0 < j < n. Therefore, W = Symg¢(V), and
hence, , is irreducible. We will show later that, up to isomorphism, these are all
irreducible finite dimensional continuous complex representations of GG. Hence, by
the Peter—Weyl theorem, the map of unitary G x G-representations

—

m
Dz, ™ W, —— Reg

is an isomorphism.

Ezample 10. Let G = SO(su(2)) ~ SO(3). We recall from last time that restriction
along the adjoint representation

SU(2) 2% SO(su(2))
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defines an equivalence of categories from Rep(SO(su(2)) onto the full subcategory

of Repc(SU(2)) that is spanned by the representations (V,m) of SU(2) for which

7m(—I) =idy. Now, for the representation , defined in Example 9, we have
ma(=1)(e1"ey) = (—e1)" ' (—e2)" = (=1)"e] b

So there exists T, € Reps(SO(su(2)) such that m, ~ Ad"(7,) € Repc(SU(2)) if

and only if n = 2m is even. Therefore, by the Peter—Weyl theorem, we conclude
that the map of unitary G x G-representations

—

_ e 2
@mEZZO T2m X Tom ? Reg

is an isomorphism.

APPENDIX: TENSORS

Let k be a field and V' a vector space.” The tensor algebra of V is defined to be
the graded associative k-algebra given by the graded k-vector space

where Ty, (V) = V" equipped with the multiplication given by
(x1®~’~®wm)~(y1®~~®yn):w1®~--®$m®y1®~~®yn.

The symmetric algebra of V is defined to be the graded commutative k-algebra
given by the quotient

Symy, (V) = @, Symi (V) = T (V) /1

of the tensor algebra of V' by the graded two-sided ideal I C Ty (V) generated by
the family (zQ@y—y®x | x,y € V), and the exterior algebra of V is defined to be
the graded anticommutative k-algebra given by the quotient

Ap(V) = @nzo AE(V) =Tw(V)/J
of the tensor algebra of V' by the graded two-sided ideal J C T} (V) generated by
the family (z @z |z € V). If f: V — U is a k-linear map, then the map

T (f)

V) —— 1)

that to 1 ® - -+ ® x,, assigns f(z1) ® -+ ® f(zy) is k-linear and induce maps

Symy (f)

n n " AR ()
Symy, (V) ———— Symj;(U) AR(V)

—— AR(U)

that also are k-linear. This makes T}(—), Symj;(—), and A} (—) functors from the
category of k-vector spaces and k-linear maps to itself.

In particular, if 7: G — GL(V) is a representation of a group G on a k-vector
space V', then the composite map

G —" 5 GLV) 2, GL(Sym] (V)

7 We only use that k is a commutative ring and that V is a k-module. It is important, however,
that k£ be commutative, so k = H is not an option.
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is a representation of G on the k-vector space Symy (V'), which we, by abuse of
notation, denote by Symy (7). Similarly, we define k-linear representations 17} (m)
and A} (m) on T (V) and AZ(V).

We denote the classes of v1®- - -@uvy, € TP (V) in Symy (V) and AL (V) by v1 ... v,
and vy A -+ A vy, respectively. If o € 3, is a permutation, then we

VUg(1) -+ -Vo(n) = V1..-Un € SymZ(V)

and

Vo(1) N+ ANUg(n) = sgn(a)vy A+ A, € AL(V).
These statements both follow immediately from the definitions. However, it is a
non-trivial theorem that if (e;);cr is a basis of V' then the family

(e, @ ---®ei, |i1,...,0n €1)
is a basis of T7?(V'), and that if we choose a total order “<” on I, then
(€5y o€y | i1yeeyin €10 <o <iiyp)
is a basis of Symy (V'), and
(eiy Ao ANei, | i1yeeyin €101 <+ <iy)

is a basis of A7 (V). For instance, if dimy (V) = d and (e1,...,eq) is a basis V, then
the fact that dimy(A%(V)) = 1 with basis e A+ - - Aegq is equivalent to the existence
of the determinant.
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