
REPRESENTATIONS OF COMPACT GROUPS

We say that a topological group G is a compact group if its underlying space
is compact and Hausdorff. The classical groups are all compact topological groups
in this sense. It turns out that the theory of continuous finite dimensional complex
representations of compact groups is completely analogous to the theory of finite
dimensional complex represenations of finite groups, except that there will typically
be a countably infinite number of non-isomorphic irreducible such representations.
We first define the generalization to compact groups of the regular representation
for finite groups. It will a representation on a complex Hilbert space L2(G), the
definition of which requires some input from analysis, which we will assume.

One can show that there exists a Borel measure µ on G that is both left-invariant
and right-invariant in the sense that for every Borel subset A ⊂ G and g ∈ G,1

µ(g ·A) = µ(A) = µ(A · g),

and regular in the sense that for every Borel subset A ⊂ G,

µ(A) = inf{µ(U) | A ⊂ U , U ⊂ G open} = sup{µ(K) | K ⊂ A compact}.
Moreover, such a measure, which is called a Haar measure, is unique up to scaling.
In particular, there exists a unique Haar measure on G that is a probability measure
in the sense that µ(G) = 1.

Let C0(G,R) to be the (right) real vector space given by the set consisting of all
continuous functions ϕ : G→ R equipped with pointwise vector sum and pointwise
scalar multiplication. Given a Haar measure µ on G, we define a linear map

C0(G,R)
I // R

as follows. Given ϕ ∈ C0(G,R), we choose a real number 0 < d < 1 and define

An,r(ϕ) = {x ∈ G | ndr ≤ ϕ(x) < (n+ 1)dr} ⊂ G,
for all integers n and positive integers r. Since ϕ : G → R is continuous and G
compact, the subset ϕ(G) ⊂ R is compact and therefore bounded. It follows that
for every positive integer r, the subset An,r(ϕ) ⊂ G is non-empty for only finitely
many integers n. It is a Borel subset, and hence, we may form the sum∑

n∈Z nd
rµ(An,r(ϕ)) ∈ R.

One may show that the limit

I(ϕ) = limr→∞
∑
n∈Z nd

rµ(An,r(ϕ)) ∈ R

exists and is independent of the choice of 0 < d < 1. Finally, one may show that
the function I : C0(G,R)→ R defined in this way is indeed linear.

Similarly, let C0(G,C) be the (right) complex vector space given by the set of
all continuous complex functions ϕ : G → C equipped with pointwise vector sum

1 More generally, if G is locally compact, then there exists a left-invariant, but not necessarily
right-invariant, measure on G.
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2 REPRESENTATIONS OF COMPACT GROUPS

and scalar multiplication. Let f : R→ C be the canonical inclusion. Then we have
the map of right real vector spaces

C0(G,R) // f∗C
0(G,C)

that to ϕ : G→ R assigns f ◦ ϕ : G→ C, and its adjunct map

f∗C0(G,R) = C0(G,R)⊗R C // C0(G,C)

is an isomorphism of complex vector spaces. Hence, we obtain a C-linear map

C0(G,C)
IC // C

defined to be the adjunct of the composite R-linear map

C0(G,R)
I // R

f
// f∗C.

We will only consider C-valued continuous functions on G, so we will abbreviate
and write C0(G) instead of C0(G,C) and I(ϕ) or

∫
G
f(x)dµ(x) instead of IC(ϕ).

Given ϕ,ψ ∈ C0(G), we define ϕψ ∈ C0(G) to be the pointwise product of ϕ
and ψ, and we define ϕ∗ to be the pointwise complex conjugate of ϕ. Since the map
I : C0(G)→ C is C-linear, it follows immediately that the map

C0(G)× C0(G)
〈−,−〉

// C

defined by 〈ϕ,ψ〉 = I(ϕ∗ψ) is a hermitian form. Moreover, this map is a hermitian
inner product. Indeed, if ϕ ∈ C0(G) and 〈ϕ,ϕ〉 = I(|ϕ|2) = 0, then ϕ = 0.

If (V, 〈−,−〉) is a complex vector space with hermitian inner product, then the
inner product gives rise to a metric d : V × V → R≥0 defined by

d(v, w) =
√
〈v − w, v − w〉,

and we say that (V, 〈−,−〉) is a Hilbert space if the metric space (V, d) is complete.2

If both (U, 〈−,−〉U ) and (V, 〈−,−〉V ) are complex vector spaces with hermitian
inner products, then we say that a linear map f : V → U is Cauchy-continuous if
for every sequence v : Z≥0 → V that is Cauchy with respect to dV , the sequence
f ◦ v : Z≥0 → U is Cauchy with respect to dU .3 Let HermC be the category, whose
objects are the complex vector spaces with hermitian inner products, and whose
morphisms are the Cauchy-continuous linear maps between these, and let HilbC be
the full subcategory of Hilbert spaces. In this situation, there is an adjunction

HermC
i∧ //

HilbC,
i∧
oo

where the right adjoint functor i∧ is the canonical inclusion, and where the left
adjoint functor i∧ takes a complex vector space with hermitian inner product

2 This means that every sequence in V that is Cauchy with respect to d converges with respect
to d. A sequence v : Z≥0 → V is Cauchy with respect to d, if for all ε > 0, there exists N ∈ Z≥0

such that d(vi, vj) < ε, for all i, j ≥ N , and it converges with respect to d, if there exists v ∈ V
such that for all ε > 0, there exists N ∈ Z≥0 such that d(v, vi) < ε, for all i ≥ N .

3 Every Cauchy-continuous map between two metric spaces is continuous, and every continuous

map between two complete metric spaces is Cauchy-continuous.
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(U, 〈−,−〉U ) to a Hilbert space (V, 〈−,−〉V ) such that the underlying metric space
(V, dV ) is the completion of the metric space (U, dU ). The unit map

(U, 〈−,−〉U )
η
// (Û , 〈−,−〉Û ) = (i∧ ◦ i∧)(U, 〈−,−〉U )

is injective and its image η(U) ⊂ Û is a dense subset of the metric space (Û , dÛ ).
In the following, we will omit the hermitian inner products from the notation.

We return to the complex vector space with hermitian inner product C0(G). It
is not a Hilbert space, unless G is finite, so we define the Hilbert space

L2(G) = Ĉ0(G)

to be its completion. As just explained the unit map

C0(G)
η
// L2(G)

is injective and its image is dense in L2(G). Hence, every element of L2(G) can be
written, non-canonically, as a limit of a Cauchy sequence of continuous C-valued
functions on G, but a general element of L2(G) is not a C-valued function on G,
unless G is finite. In particular, the value “f(x)” of f ∈ L2(G) at x ∈ G is not
meaningful.4 We will see below that the Hilbert space L2(G) is separable in the
sense that it admits a countably dimensional dense subspace.

Lemma 1. The map I : C0(G)→ C is Cauchy-continuous.

Proof. We must show that if the sequence ϕ : Z≥0 → C0(G) is Cauchy, then so is
the sequence I ◦ ϕ : Z≥0 → C. It suffices to show that for all ϕ,ψ ∈ C0(G),

|I(ϕ)− I(ψ)| = |I(ϕ− ψ)| ≤ I(|ϕ− ψ|),
which follows immediately from the definition of I : C0(G)→ C. �

Since C is complete, we conclude that I : C0(G) → C extends uniquely to a
continuous, or equivalently, Cauchy-continuous linear map

L2(G)
I // C.

Example 2. If G is a finite group, which we consider as a compact topological group
with the discrete topology, then the Haar probability measure on G is given by the
normalized counting measure that to A ⊂ G assigns µ(A) = |A|/|G|. It follows that
the corresponding integral I : C0(G)→ C is given by

I(f) = |G|−1
∑
x∈G f(x),

so we find that L2(G) = C0(G) = C[G].

We wish to extend the definition of the two-sided regular representation from
finite groups to compact groups. So let G be a compact topological group. Given
(g1, g2) ∈ G×G and ϕ ∈ C0(G), the formula

Reg(g1, g2)(ϕ)(x) = ϕ(g−1
2 xg1)

4 The linear map evx : C0(G) → C defined by evx(ϕ) = ϕ(x) is not Cauchy-continuous, and
hence, does not extend to a map evx : L2(G)→ C. However, it is possible to identify L2(G) with
the quotient of the complex vector space consisting of the functions f : G → C that are Haar
measurable and square-integrable by the subspace of functions that are zero almost everywhere.
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defines an element Reg(g1, g2)(ϕ) ∈ C0(G). Moreover, since a Haar measure on G
is both left-invariant and right-invariant, the map

C0(G) C0(G)
Reg(g1,g2)

//

is a linear isometry with respect to 〈−,−〉. Indeed, we have

‖Reg(g1, g2)(ϕ)‖2 =
∫
G
|ϕ(g−1

2 xg1)|2dµ(x) =
∫
G
|ϕ(x)|2dµ(x) = ‖ϕ‖2.

In particular, it is Cauchy-continuous, and therefore, it induces a map

L2(G) L2(G)
Reg(g1,g2)

//

which is a linear isometry with inverse Reg(g−1
1 , g−1

2 ). This defines a map

G×G U(L2(G))
Reg

//

to the group of linear isometric isomorphisms of L2(G).5 We wish to say that this
is a map of topological groups, so we much define a topology on U(L2(G)) and
show that the map is continuous. It turns out that the appropriate topology on
U(L2(G)) is the so-called strong operator topology.6

Proposition 3. The two-sided regular representation

G×G U(L2(G))
Reg

//

is continuous with respect to the strong operator topology.

Proof. The strong operator topology has the property that the map Reg in question
is continuous if and only if for every ϕ ∈ L2(G), the composite map

G×G U(L2(G)) L2(G)
Reg

//
evϕ

//

is continuous. Let us write Regϕ for this map. Since G×G is a topological group,
it suffices to prove that this map is continuous at (g1, g2) = (e, e).

We first let ϕ ∈ C0(G) and prove that Regϕ is continuous at (e, e). We have

‖Regϕ(g1, g2)− Regϕ(e, e)‖2 =
∫
G
|ϕ(g−1

2 xg1)− ϕ(x)|2dµ(x)

and wish to prove that this quantity goes to 0 as (g1, g2)→ (e, e). Since both ϕ and
multiplication and inversion in G are continuous, we have every x ∈ G,

lim(g1,g2)→(e,e)|ϕ(g−1
2 xg1)− ϕ(x)|2 = 0.

Moreover, for all x ∈ G, the integrand is dominated by

|ϕ(g−1
2 xg1)− ϕ(x)|2 ≤ 4 · sup{|ϕ(h)| | h ∈ G},

so by the dominated convergence theorem for the integral, we conclude that

lim(g1,g2)→(e,e)

∫
G
|ϕ(g−1

2 xg1)− ϕ(x)|2dµ(x) = 0

as desired.

5 Traditionally, linear isometric isomorphisms of a Hilbert space h are called unitary operators,
and therefore, we write U(h) for the group consisting of these operators.

6 The uniform operator topology, which is given by the operator norm, is stronger than the
strong operator topology. It turns out that it is too strong for our purposes, since, even for

G = U(1), the map Reg is not continuous with respect to this topology.
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We next prove that for any ϕ ∈ L2(G), the map Regϕ is continuous at (e, e).
Given ε > 0, we choose ϕε ∈ C0(G) such that ‖ϕ − ϕε‖ < ε, which is possible,
because C0(G) is dense in L2(G). Now

‖Regϕ(g1, g2)− ϕ‖ ≤ ‖Regϕ(g1, g2)− Regϕε(g1, g2)‖
+ ‖Regϕε(g1, g2)− ϕε‖+ ‖ϕε − ϕ‖

= 2‖ϕ− ϕε‖+ ‖Regϕε(g1, g2)− ϕε‖
< 2ε+ ‖Regϕε(g1, g2)− ϕε‖,

and by the first case, there exists an open neighborhood (e, e) ∈ U ⊂ G × G such
that ‖Regϕε(g1, g2)− ϕε‖ < ε, for all (g1, g2) ∈ U . So we conclude that

‖Regϕ(g1, g2)− ϕ‖ < 3ε,

for all (g1, g2) ∈ U . This proves that Regϕ is continuous at (e, e). �

If (V, π) is a finite dimensional complex representation of G, then we define the
associated space of matrix coefficients M(π) to be the image of the map

V ⊗ V ∗
µπ // C0(G) ⊂ L2(G)

defined by µπ(v ⊗ h)(g) = h(π(g)(v)). One verifies immediately that it intertwines
between π � π∗ and Reg, so that we obtain a map

π � π∗
µπ // RegM(π)

of continuous representations of G×G. It is an isomorphism, if π is an irreducible
representation of G, because then π� π∗ is an irreducible representation of G×G.

Lemma 4. Let G be a compact topological group, let π1 and π2 be irreducible finite
dimensional complex representations of G, and let M(π1),M(π2) ⊂ L2(G) be their
subspaces of matrix coefficients.

(1) If π1 ' π2, then M(π1) = M(π2).
(2) If π1 6' π2, then M(π1) ⊥M(π2).

Proof. To prove (1), we let V1 and V2 be the representation spaces of π1 and π2, re-
spectively, and let h : V1 → V2 be a linear isomorphism that is intertwining between
π1 and π2. In this situation, the diagram

V1 ⊗ V ∗2 V1 ⊗ V ∗1

V2 ⊗ V ∗2 L2(G)

id⊗h∗
//

h⊗id

��

µπ1

��µπ2 //

commutes, and therefore,

M(π1) = im(µπ1
) = im(µπ1

◦ (id⊗h∗)) = im(µπ2
◦ (h⊗ id)) = im(µπ2

) = M(π2).

To prove (2), we consider the composition

M(π1)
i // L2(G)

p
// M(π2)

of the canonical inclusion of M(π1) and the orthogonal projection onto M(π2). The
map i is intertwining between RegM(π1) and Reg, since M(π1) is a Reg-invariant
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subspace, and the map p is intertwining between Reg and RegM(π2), since Reg is a
unitary representation. Therefore, the composite map p ◦ i is intertwining between
RegM(π1) and RegM(π2), which are non-isomorphic irreducible finite dimensional
complex representations of G×G, so by Schur’s lemma, p ◦ i = 0 as stated. �

The theorem of Peter and Weyl states that if G is a compact topological group,
then the two-sided regular representation of G × G decomposes as the completed
direct sum of the spaces of matrix coefficients, one for each isomorphism class of
irreducible finite dimensional continuous complex representations of G.

Theorem 5 (Peter–Weyl). Let G be a compact topological group, and let Ĝ be the
set of isomorphism classes of finite dimensional complex representations of G. For

every σ ∈ Ĝ, let (Vσ, πσ) be a representative of the class σ. The map⊕̂
σ∈Ĝ πσ � π∗σ

µ
// Reg,

whose σth component is given by µπσ (v ⊗ h)(g) = h(πσ(g)(v)), is an isomorphism
of continuous representations of G×G.

Proof. We will only prove the theorem for compact groups G that admit a faithful
continuous representation ρ : G→ GLn(C); for a proof in the general case, we refer
to [1, Theorem 5.4.1]. By Lemma 4, the canonical map⊕

σ∈Ĝ M(πσ) // C0(G)

is injective, and we proceed to prove that its image is dense with respect to the
L2-norm. To this end, we let aij = µρ(ej⊗e∗i ) ∈ C0(G) be the matrix coefficients of
ρ : G→ GLn(C) and consider the sub-C-algebra C[G] ⊂ C0(G) given by the image
of the unique C-algebra homomorphism

C[Xij , Yij | 1 ≤ i, j ≤ n] // C0(G)

that to Xij and Yi,j assign aij and a∗ij . We claim that C[G] ⊂ C0(G) is dense with

respect to the L2-norm. Indeed, by the Stone–Weierstrass theorem, C[G] ⊂ C0(G)
is dense with respect to the supremum norm ‖−‖∞, and since G has finite volume
µ(G), the calculation

‖ϕ‖22 =
∫
G
|ϕ(x)|2dµ(x) ≤

∫
G
‖ϕ‖2∞dµ(x) = ‖ϕ‖2∞µ(G)

shows that C[G] ⊂ C0(G) is also dense with respect to the L2-norm.

Now, for all m ≥ 0, we consider the finite dimensional subspace

Film C[G] ⊂ C[G]

given by the image by the C-algebra homomorphism

C[Xij , Yi,j | 1 ≤ i, j ≤ n] // C0(G)

of the subspace of polynomials of degree ≤ m. It is Reg-invariant, since the matrix
coefficients aij transform linearly under left and right translation on G, and⋃

m≥0 Film C[G] = C[G].

We consider the representation Rm : G → GL(Film C[G]) given by the restriction
of the right regular representation of G on L2(G) to this subspace. Since it is
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finite dimensional, it decomposes as a direct sum of irreducible finite dimensional
representations of G, so by Lemma 4, the inclusion M(Rm)→ C0(G) factors as

M(Rm) //
⊕

σ∈ĜM(πσ) // C0(G).

We define ε : C0(G) → C to be the linear map given by ε(ϕ) = ϕ(e) and consider
the map νm : Film C[G]→M(Rm) given by νm(ϕ) = µRm(ϕ⊗ ε). The calculation

νm(ϕ)(g) = µRm(ϕ⊗ ε)(g) = ε(Rm(g)(ϕ)) = Rm(g)(ϕ)(e) = ϕ(e · g) = ϕ(g)

shows that the composite map

Film C[G]
νm // M(Rm) //

⊕
σ∈ĜM(πσ) // C0(G)

is equal to the canonical inclusion, and hence, the canonical inclusion of C[G] into
C0(G) factors as a composition

C[G] =
⋃
m≥0 Film C[G] //

⊕
σ∈ĜM(πσ) // C0(G).

Since the image of the composite map is dense with respect to the L2-norm, so is
the image of the right-hand map. This completes the proof. �

Remark 6. Let G be a linear compact topological group, let ρ : G → GLn(C) be
a faithful continuous representation, and let C[G] ⊂ C0(G) be the subalgebra of
polynomial functions on G defined in the proof of Theorem 5. We claim that

C[G] =
⊕

σ∈ĜM(πσ) ⊂ C0(G).

For otherwise, there exists τ ∈ Ĝ such that M(πτ ) 6⊂ C[G], and since C[G] is a direct
sum of irreducible finite dimensional representations, it follows from Lemma 4 that
M(πτ ) ⊥ C[G]. But this contradicts the fact that C[G] ⊂

⊕
σ∈ĜM(πσ) is dense.

Remark 7. In general, a unitary representation of a topological group G is defined
to be a pair (h, π) of a Hilbert space h and a continuous group homomorphism

G
π // U(h)

from G to the group U(h) of linear isometric isomorphisms of h equipped with the
strong operator topology. As a consequence of the Peter–Weyl theorem, one can
show that for G compact, every such representation admits a finite dimensional
π-invariant subspace V ⊂ h; for a proof, see [1, p. 301]. Hence, every irreducible
unitary representation of a compact topological group G is finite dimensional. By
contrast, locally compact topological groups such as G = GLn(C) that are not
compact have irreducible unitary representations that are infinite dimensional.

Example 8. We let G = U(1) and let τ : G→ GL(V ) be the standard representation
on V = C. For every n ≥ 0, we have the representation

τn = Symn
C(τ)

of G on Symn
C(V ). It is an irreducible representation, because the complex vector

space Symn
C(V ) is 1-dimensional. Let (e1) be the standard basis of V so that (en1 )

is a basis of Symn
C(V ). Then for z ∈ G, we have

τn(z)(en1 ) = (e1z)
n = en1 z

n.

The dual representation τ−n = τ∗n is also 1-dimensional, and hence, irreducible, and

τ−n(z)((e∗1)n) = ((e1z)
∗)n = (e∗1)nz−n.
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So for all m,n ∈ Z, we have τm ' τn if and only if m = n. Up to isomorphism,
these are all irreducible finite dimensional continuous complex representations of
G. Hence, by the Peter–Weyl theorem, the map of unitary G×G-representations⊕̂

n∈Z τn � τ∗n
µ
// Reg

is an isomorphism.

Example 9. Let G = SU(2) and let π : G→ GL(V ) be the standard representation
on V = C2. For every n ≥ 0, we have the representation

πn = Symn
C(π)

of G on the (n+ 1)-dimensional complex vector space Symn
C(V ). Let (e1, e2) be the

standard basis of V so that (en−i1 ei2 | 0 ≤ i ≤ n) is a basis of Symn
C(V ). We let

f : U(1)→ SU(2) be the group homomorphism defined by f(z) = diag(z, z−1) and
consider the representation f∗(πn) of U(1). For z ∈ U(1), the calculation

πn(f(z))(en−i1 ei2) = (e1z)
n−i(e2z

−1)i = en−i1 ei2z
n−2i

shows that the C-linear isomorphism⊕
0≤i≤n Symn−2i

C (C)
h // Symn

C(V ),

whose ith component is given by hi(v
n−2i
i ) = en−i1 ei2v

n−2i
i , is intertwining with

respect to
⊕

0≤i≤n τn−2i and f∗(πn). Therefore, every f∗(πn)-invariant subspace
of Symn

C(V ) is of the form W = h(
⊕

i∈S Symn−2i
C (C)) with S ⊂ {0, 1, . . . , n}. In

particular, if x =
∑

0≤i≤n e
n−i
1 ei2xi ∈W and xi 6= 0, then en−i1 ei2 ∈W .

If W ⊂ Symn
C(V ) is a non-zero πn-invariant subspace, then W is in particular

an f∗(πn)-invariant subspace. Hence, there exists 0 ≤ i ≤ n such that en−i1 ei2 ∈W .
We now consider

g =

(
1 1
0 1

)
∈ G

and first calculate

g · en−i1 ei2 = en−i1 (e1 + e2)i = en1 +
∑

0<j≤i
(
i
j

)
en−i−j1 ej2,

which shows that en1 ∈W , and next calculate

g∗ · en1 = (e1 + e2)n =
∑

0≤j≤n
(
n
j

)
en−j1 ej2,

which shows that en−j1 ej2 ∈ W for all 0 ≤ j ≤ n. Therefore, W = Symn
C(V ), and

hence, πn is irreducible. We will show later that, up to isomorphism, these are all
irreducible finite dimensional continuous complex representations of G. Hence, by
the Peter–Weyl theorem, the map of unitary G×G-representations⊕̂

n∈Z≥0
πn � π∗n

µ
// Reg

is an isomorphism.

Example 10. Let G = SO(su(2)) ' SO(3). We recall from last time that restriction
along the adjoint representation

SU(2)
Ad // SO(su(2))
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defines an equivalence of categories from RepC(SO(su(2)) onto the full subcategory
of RepC(SU(2)) that is spanned by the representations (V, π) of SU(2) for which
π(−I) = idV . Now, for the representation πn defined in Example 9, we have

πn(−I)(en−i1 ei2) = (−e1)n−i(−e2)i = (−1)nen−i1 ei2.

So there exists π̄n ∈ RepC(SO(su(2)) such that πn ' Ad∗(π̄n) ∈ RepC(SU(2)) if
and only if n = 2m is even. Therefore, by the Peter–Weyl theorem, we conclude
that the map of unitary G×G-representations⊕̂

m∈Z≥0
π̄2m � π̄∗2m

µ
// Reg

is an isomorphism.

Appendix: Tensors

Let k be a field and V a vector space.7 The tensor algebra of V is defined to be
the graded associative k-algebra given by the graded k-vector space

Tk(V ) =
⊕

n≥0 T
n
k (V ),

where Tk(V ) = V ⊗kn, equipped with the multiplication given by

(x1 ⊗ · · · ⊗ xm) · (y1 ⊗ · · · ⊗ yn) = x1 ⊗ · · · ⊗ xm ⊗ y1 ⊗ · · · ⊗ yn.

The symmetric algebra of V is defined to be the graded commutative k-algebra
given by the quotient

Symk(V ) =
⊕

n≥0 Symn
k (V ) = Tk(V )/I

of the tensor algebra of V by the graded two-sided ideal I ⊂ Tk(V ) generated by
the family (x⊗ y − y ⊗ x | x, y ∈ V ), and the exterior algebra of V is defined to be
the graded anticommutative k-algebra given by the quotient

Λk(V ) =
⊕

n≥0 Λnk (V ) = Tk(V )/J

of the tensor algebra of V by the graded two-sided ideal J ⊂ Tk(V ) generated by
the family (x⊗ x | x ∈ V ). If f : V → U is a k-linear map, then the map

Tnk (V ) Tnk (U)
Tnk (f)

//

that to x1 ⊗ · · · ⊗ xn assigns f(x1)⊗ · · · ⊗ f(xn) is k-linear and induce maps

Symn
k (V ) Symn

k (U) Λnk (V ) Λnk (U)
Symn

k (f)
//

Λnk (f)
//

that also are k-linear. This makes Tnk (−), Symn
k (−), and Λnk (−) functors from the

category of k-vector spaces and k-linear maps to itself.

In particular, if π : G → GL(V ) is a representation of a group G on a k-vector
space V , then the composite map

G GL(V ) GL(Symn
k (V ))

π //
Symn

k //

7 We only use that k is a commutative ring and that V is a k-module. It is important, however,
that k be commutative, so k = H is not an option.
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is a representation of G on the k-vector space Symn
k (V ), which we, by abuse of

notation, denote by Symn
k (π). Similarly, we define k-linear representations Tnk (π)

and Λnk (π) on Tnk (V ) and Λnk (V ).

We denote the classes of v1⊗· · ·⊗vn ∈ Tnk (V ) in Symn
k (V ) and Λnk (V ) by v1 . . . vn

and v1 ∧ · · · ∧ vn, respectively. If σ ∈ Σn is a permutation, then we

vσ(1) . . . vσ(n) = v1 . . . vn ∈ Symn
k (V )

and
vσ(1) ∧ · · · ∧ vσ(n) = sgn(σ)v1 ∧ · · · ∧ vn ∈ Λnk (V ).

These statements both follow immediately from the definitions. However, it is a
non-trivial theorem that if (ei)i∈I is a basis of V then the family

(ei1 ⊗ · · · ⊗ ein | i1, . . . , in ∈ I)

is a basis of Tnk (V ), and that if we choose a total order “≤” on I, then

(ei1 . . . ein | i1, . . . , in ∈ I, i1 ≤ · · · ≤ in)

is a basis of Symn
k (V ), and

(ei1 ∧ · · · ∧ ein | i1, . . . , in ∈ I, i1 < · · · < in)

is a basis of Λnk (V ). For instance, if dimk(V ) = d and (e1, . . . , ed) is a basis V , then
the fact that dimk(Λdk(V )) = 1 with basis e1 ∧ · · · ∧ ed is equivalent to the existence
of the determinant.
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