
SMOOTH MANIFOLDS

We recall that a topological group is defined to be a group G = (G,µ, ι) together
with a topology on the set G such that the maps µ : G×G→ G and ι : G→ G are
continuous. Similarly, a Lie group is defined to be a group G = (G,µ, ι) together
with a structure of smooth manifold on the set G such that the maps µ : G×G→ G
and ι : G→ G are smooth. We first discuss smooth manifolds.

Smooth manifolds belong to geometry rather than topology. Geometric objects
are pairs (X,OX) of a topological space X and a sheaf of rings OX on X, where
for U ⊂ X open, the set Γ(U,OX) of sections of OX over U should be thought of
as the set “geometric functions” on U . The geometric functions that we allow will
depend on the geometric situation that we consider. For instance, we could consider
“smooth functions,” “analytic functions,” or “algebraic functions,” but note that we
have not yet assigned any precise mathematical meaning to these terms. Moreover,
in some situations, the elements of Γ(U,OX) may not be functions in the usual
sense. A map of geometric objects f : (Y,OY ) → (X,OX) is a pair (f, f ]) of a
continuous map f : Y → X and a map of sheaves of rings f ] : OX → f∗OY . Let us
now define sheaves properly.

Let X be a topological space, and let XZar be the category, whose objects are
the open subsets U ⊂ X, and whose morphisms are

HomXZar
(U, V ) =

{
{inclVU} if U ⊂ V
∅ if U 6⊂ V.

So if U ⊂ V , then there is a unique morphism inclVU : U → V , and if U 6⊂ V , then
there are no morphisms from U to V . A presheaf of sets on X is a defined to be
a functor F : Xop

Zar → Set. To specify a functor F : Xop
Zar → Set, we must specify

for every open subset U ⊂ X, a set F(U), and for every inclusion U ⊂ V of open

subsets of X, a map F(inclVU ) : F(V )→ F(U). We may think of F (U) as the set of

“functions defined on U” and of F(inclVU ) as the map that to a “function defined
on U” assigns the restriction of this function to a “function defined on V .” To
emphasize this interpretation, we also write Γ(U,F) = F(U) and call it the set of

sections of F over U , and we write ResVU = F(inclVU ) and call it the restriction from
V to U . A presheaf F : Xop

Zar → Set is defined to be a sheaf if it satisfies the following
sheaf condition: For every covering (Ui → U)i∈I of an open subset U ⊂ X by open
subsets Ui ⊂ U , the diagram

F(U)
h //

∏
i∈I F(Ui)

a //

b
//
∏

(i,j)∈I×I F(Ui ∩ Uj)

is an equalizer. Here h is the unique map such that for all i ∈ I,

pri ◦h = ResUUi
,

1
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and a and b are the unique maps such that for all (i, j) ∈ I × I,

pr(i,j) ◦ a = ResUi

Ui∩Uj
◦ pri

pr(i,j) ◦ b = Res
Uj

Ui∩Uj
◦prj .

That the diagram is an equalizer means that for all (ϕi)i∈I ⊂
∏
i∈I F(Ui) such that

a((ϕi)i∈I) = b((ϕi)i∈I),

there exists a unique ϕ ∈ F(U) such that

(ϕi)i∈I = (ResUUi
(ϕ))i∈I .

Informally, the sheaf condition expresses that if we are given “functions” ϕi on Ui
for all i ∈ I such that ϕi|Ui∩Uj

= ϕj |Ui∩Uj
for all (i, j) ∈ I × I, then there exists a

unique “function” ϕ on U such that ϕi = ϕ|Ui
for all i ∈ I.

Example 1. Let X be a topological space, and let k = R or k = C. The presheaf
Ocont
X : Xop

Zar → Set, where Γ(U,Ocont
X ) is defined to be the set of continuous functions

ϕ : U → k, and where ResVU : Γ(V,Ocont
X ) → Γ(U,Ocont

X ) is defined to be the map

ResVU (ϕ) = ϕ ◦ inclVU , is a sheaf, because “being continuous” is a local property.

We define the category of presheaves of sets on X to be the category

PreShv(X) = Fun(Xop
Zar,Set),

whose objects are functors and whose morphisms are natural transformations, and
we define the category of sheaves on X to be the full subcategory

Shv(X) ⊂ PreShv(X),

whose objects are the sheaves on X. One can prove that there is an adjunction

PreShv(X) Shv(X)
assX //

ιX
oo

where the right adjoint functor ιX is the canonical inclusion of the subcategory of
sheaves in the category of presheaves, and where the left adjoint functor assX takes
a presheaf to its associated sheaf. This functor is called “sheafification.”

Example 2. Let X be a topological space, and let F ∈ PreShv(X) be the presheaf of
constant functions, F(U) = {ϕ : U → k | ϕ constant}. It is not a sheaf, since “being
constant” is not a local property. The associated sheaf assX(F ) ∈ Shv(X) is the
sheaf of locally constant functions, assX(F )(U) = {ϕ : U → R | ϕ locally constant}.

It is a fundamental result of Grothendieck1 that “sheafification” preserves finite
limits. (The inclusion functor ιX preserves all limits, as does every right adjoint
functor.) In particular, it preserves finite products, which implies that it takes
“presheaves of rings” to “sheaves of rings.” Indeed, we define a presheaves of rings
and sheaves of rings to be ring objects in PreShv(X) and Shv(X), respectively.
A ring object in a category C with finite products is defined to be a sixtuple
(R,+, · ,−, 0, 1) of an object R ∈ C, two morphisms +, · : R × R → R, one mor-
phism − : R → R, and two morphisms 0, 1: e → R that satisfy the usual ring
axioms. Here the empty product e = R0 ∈ C is a terminal object.

1This result and many results are consequences of Grothendieck’s theorem that, in the category

of sets, filtered colimits and finite limits commute.
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Let f : Y → X be a continous map. If U ⊂ X is open, then f−1(U) ⊂ Y is open,
so we obtain a functor f−1 : XZar → YZar. The functor

PreShv(Y )
fp
// PreShv(X)

is defined by fp(G) = G ◦ f−1 has a left adjoint functor

PreShv(X)
fp

// PreShv(Y )

given by left Kan extension along f−1 : Xop
Zar → Y op

Zar. More concretely, we have

fp(F)(V ) = colimf(V )⊂U F(U),

where the colimit is indexed by the opposite of the “slice category”

(XZar)/f−1 ×YZar
{V }

with objects open subsets U ⊂ X such that V ⊂ f−1(U) and with morphisms
inclusions among such open subsets. It is a filtered category, so fp preserves finite
limits by Grothendieck’s theorem. The functor fp preserves sheaves in the sense
that there is a unique functor f∗ making the diagram

Shv(Y )
f∗ //

ιX

��

Shv(X)

ιY

��

PreShv(Y )
fp
// PreShv(X)

commute, but the functor fp does not. However, the functor

Shv(X)
f∗
// Shv(Y )

defined by f∗ = assY ◦fp ◦ ιX is left adjoint of f∗. We call f∗ the inverse image
functor and we call f∗ the direct image functor. So we have an adjunction

Shv(X)
f∗
//
Shv(Y )

f∗

oo

and the functor f∗ preserves finite limits. In particular, it preserves ring objects.

Example 3. (1) Let j : U → X be the inclusion of an open subset. It is an open
map in the sense that if V ⊂ U is open, then so is V = j(V ) ⊂ X. This implies
jp : PreShv(X)→ PreShv(U) preserves sheaves and that j∗ : Shv(X)→ Shv(U) is
given by j∗(F)(V ) = F(j(V )). Therefore, we also write F|U = j∗(F).

(2) Let ix : {x} → X be the inclusion of a point and note that Shv({x}) ' Set.
Indeed, a presheaf G : {x}Zar → Set is a sheaf if and only if G(∅) is a one-element set,
so, up to unique isomorphism, a sheaf G ∈ Shv({x}) is determined by the set G({x}).
We say that Fx = i∗x(F)({x}) is the stalk of F ∈ Shv(X) at x ∈ X. Concretely,
we have Fx = colimx∈U F(U), where the colimit is indexed by the opposite of the
category of open neighborhoods x ∈ U ⊂ X under inclusion. One can prove that a
morphism h : F → F′ in Shv(X) is an isomorphism if and only if the induced map
of stalks hx : Fx → F′x is an isomorphism for all x ∈ X.2

2We refer to this statement by saying that the Zariski topos Shv(X) has “enough points.”
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The sheaf Ocont
X continuous k-valued functions on X is a sheaf of commutative

rings, and therefore, its stalk Ocont
X,x at x ∈ X is a commutative ring.

Lemma 4. For every x ∈ X, Ocont
X,x is a local ring.

Proof. The elements h ∈ Ocont
X,x are germs of continuous k-valued functions at x ∈ X,

that is, equivalence classes of pairs (U,ϕ) of an open neighborhood x ∈ U ⊂ X and
a continuous function ϕ : U → k, where two such pairs (U1, ϕ1) and (U2, ϕ2) are
equivalent, if there exists x ∈ V ⊂ U1 ∩ U2 open such that ϕ1|V = ϕ2|V . The
map i]x : Ocont

X,x → k that to the class of (U,ϕ) assigns ϕ(x) is a surjective ring

homomorphism to a field, so its kernel mx ⊂ Ocont
X,x is a maximal ideal. Now, if

h ∈ Ocont
X,x and h /∈ mx, then we can represent h by a pair (U,ϕ) such that ϕ(u) 6= 0

for all u ∈ U . This shows that h is invertible with h−1 given by the class of the pair
(U,ψ), where ψ(u) = ϕ(u)−1. This proves the lemma. �

Let f : Y → X be a continuous map. We define the morphism

Ocont
X

f]

// f∗O
cont
Y

of sheaves of rings on X as follows. If U ⊂ X is open with V = f−1(U) ⊂ Y , then

Γ(U,Ocont
X )

f]
U // Γ(U, f∗O

cont
Y ) = Γ(V,Ocont

Y )

is the ring homomorphism that to ϕ : U → k assigns ϕ◦f |V : V → k. By adjunction,
it determines and is determined by a morphism

f∗Ocont
X

f̃]

// Ocont
Y .

of sheaves of rings on Y . We will abuse notation and write also f ] instead of f̃ ] for
this map. The induced map of stalks at y ∈ Y is a ring homomorphism

Ocont
X,x = i∗xO

cont
X ' (f ◦ iy)∗Ocont

X ' i∗yf∗Ocont
X

f]
y
// i∗yOY = Ocont

Y,y ,

where the indicated isomorphisms are the unique natural isomorphisms between
different choices of left adjoint functors of the functor ix∗ = (f ◦ iy)∗.

Lemma 5. The ring homomorphism f ]y : Ocont
X,x → Ocont

Y,y is a local homomorphism.

Proof. That f ]y is a local homomorphism means that it is a ring homomorphism
and that (f ]y)−1(my) = mx, or equivalently, that the following diagram commutes.

Ocont
X,x k

Ocont
Y,y k

i]x //

f]
y

�� i]y
//

Now, if h ∈ Ocont
X,x is represented by the pair (U,ϕ), where x ∈ U ⊂ X is an open

neighborhood and ϕ : U → k is a continuous map, then y ∈ V = f−1(U) ⊂ Y is an
open neighborhood, and the pair (V, ϕ ◦ f |V ) represents f ]y(h) ∈ OY,y. So

i]y(f ]y(h)) = (ϕ ◦ f |V )(y) = ϕ(f(y)) = ϕ(x) = i]x(h),

as desired. �
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We will consider other kinds of “functions,” but we always want them to retain
the properties that we proved in Lemmas 4 and 5 for continuous functions. We
encode these properties in the following definition.

Definition 6. (1) A locally ringed space is a pair (X,OX) of a topological space
X and a sheaf of rings OX such that for all x ∈ X, the stalk OX,x is a local ring.

(2) A morphism of locally ringed spaces is a pair (f, f ]) : (Y,OY ) → (X,OX) of a
continuous map f : Y → X and a morphism f ] : OX → f∗OY of sheaves of rings on
X such that for all y ∈ Y , the induced map of stalks f ]y : OY,y → OX,f(y) is a local
ring homomorphism.

If (X,OX) is a locally ringed space, if U ⊂ X is open, and if ϕ ∈ Γ(U,OX), then
we define its value ϕ(x) at x ∈ U to be the image of ϕ by the composite map

Γ(U,OX)
iU // OX,x

i]x // k(x) = OX,x/mx.

We note that the value ϕ(x) ∈ k(x) is an element of a field k(x) that may vary with
x ∈ U . It may also happen that ϕ 6= 0 even though ϕ(x) = 0 for all x ∈ U .

We now define the “geometric functions” relevant for smooth manifolds, namely,
the smooth functions. However, our discussion below applies mutatis mutandis to
holomorphic functions and complex manifolds and to analytic functions and real
analytic manifolds. Let U ⊂ Rn be an open subset. A function ϕ : U → R is defined
to be smooth if the partial derivatives ∂ kϕ/∂xi1 . . . ∂xik : U → R exist and are
continuous for all k ≥ 0 and 1 ≤ i1, . . . , ik ≤ n. The sheaf of standard smooth
functions on U is defined to be the subsheaf Osm

U ⊂ Ocont
U given by

Γ(V,Osm
U ) = {ϕ : V → R | ϕ smooth} ⊂ Γ(V,Ocont

U )

for all V ⊂ U open. We say that a locally ringed space (X,OX) is an affine smooth
manifold, if there exists an isomorphism of locally ringed spaces

(X,OX) (U,Osm
U )

(f,f])
//

with U ⊂ Rn open. The number n is uniquely determined by (X,OX) and is called
the dimension of the affine smooth manifold.

Definition 7. A smooth manifold3 is a locally ringed space (X,OX) for which
there exists an open covering (Ui → X)i∈I such that for all i ∈ I, (Ui,OX |Ui

) is
an affine smooth manifold. A morphism f : (Y,OY ) → (X,OX) between smooth
manifolds is a morphism of locally ringed spaces.

Remark 8. (1) If (X,OX) is a smooth manifold, then OX is canonically isomorphic
to a subsheaf of Ocont

X . Indeed, by definition, this is true locally, so by the sheaf
condition, it is also true globally. Moreover, if (f, f ]) : (Y,OY ) → (X,OX) is a
morphism between smooth manifolds, then the diagram

OX f∗OY

Ocont
X f∗O

cont
Y

f]

//
� _

��
f]

//

� _

��

3 In the literature, the requirement that X be Hausdorff is often included in the definition of
a smooth manifold, but we will not do so. Note that “being Hausdorff” is not a local property.



6 SMOOTH MANIFOLDS

commutes, and therefore, the top horizontal map is uniquely determined by the
bottom horizontal map. So we may view “being smooth” as the property of the
continuous map f : Y → X that a map f ] : OX → f∗OY making the diagram
commute exist. We also note that an isomorphism between smooth manifolds is
traditionally called a diffeomorphism.

(2) We define the dimension of a smooth manifold (X,OX) to be the map

X Z≥0
dim

//

that to x ∈ X assigns n = dim(x), if there exists x ∈ U ⊂ X open with (U,OX |U )
an affine smooth manifold of dimension n. It is well-defined and locally constant,
and if it is constant with value n, then we say that (X,OX) has pure dimension n or
that (X,OX) is a smooth n-manifold. We define a chart of (X,OX) around x ∈ X
to be a pair (U, h) of an open neighborhood x ∈ U ⊂ X and a diffeomorphism

(U,OX |U )
h // (V,Osm

V )

with V ⊂ Rdim(x) an open subset.

Proposition 9. The category of smooth manifolds and their morphisms admits
finite products. More precisely, if f : (Z,OZ)→ (X,OY ) and g : (Z,OZ)→ (Y,OY )
are morphisms between smooth manifolds, then, up to unique isomorphism, there
is a unique sheaf of rings OX×Y on X × Y such that (X × Y,OX×Y ) is a smooth
manifold and such that, in the diagram

(Z,OZ)

(X,OX) (X × Y,OX×Y ) (Y,OY ),

f

~~

g

  

(f,g)

��
p

oo
q
//

the projections p and q and the unique map (f, g) that makes the diagram commute
are morphisms of smooth manifolds.

Proof. Up to isomorphism, there is a unique sheaf OX×Y on X×Y such that given
(x, y) ∈ X × Y and charts f : (U,OX |U ) → (A,Osm

A ) and g : (V,OY |V ) → (B,Osm
B )

around x ∈ X and y ∈ Y , respectively, the map

(U × V,OX×Y |U×V )
f×g
// (A×B,Osm

A×B)

is a chart around (x, y) ∈ X × Y .4 Since the subsets of the form U × V ⊂ X × Y ,
where U ⊂ X and V ⊂ Y are open, form a basis for the product topology, this
shows that (X × Y,OX×Y ) is a smooth manifold. That the maps p, q, and (f, g)
are smooth can be checked locally in charts, where it is clear. �

One can construct new smooth manifolds is by gluing existing smooth manifolds
together. To state the result, we introduce some terminology. In general, we define

4There is a canonical map OX ⊗k OY → OX×Y of sheaves of k-algebras on X × Y , but it is

not an isomorphism. Rather the target is a suitable completion of the source.
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a morphism (s, t) : R→ Y ×Y in a category C that admits finite products to be an
equivalence relation if for all Z ∈ C, the induced map of sets

HomC(Z,R) HomC(Z, Y )×HomC(Z, Y )
(s,t)

//

exhibits HomC(Z,R) as an equivalence relation on HomC(Z, Y ) in the usual sense.
In particular, the morphism (s, t) is a monomorphism.

A morphism f : (Y,OY ) → (X,OX) of smooth manifolds is étale if there exists
an open covering (Vi → Y )i∈I such that each f |Vi

: (Vi,OY |Vi
)→ (f(Vi),OX |f(Vi))

is a diffeomorphism. It is an open immersion if, in addition, the map f : Y → X is
injective. The image f(Y ) ⊂ X of an étale morphism is an open subset.

Proposition 10. Given an equivalence relation of smooth manifolds

(R,OR) (Y,OY )× (Y,OY )
(s,t)

//

such that Y =
∐
i∈I Yi and R =

∐
(i,j)∈I×I Ui,j and such that s and t restrict to

open immersions s|Ui,j : Ui,j → Yi and t|Ui,j : Ui,j → Yj, the coequalizer

(R,OR)
s //

t
// (Y,OY )

f
// (X,OX)

exists. Moreover, the morphism f is étale.

Proof. LetX = Y/R with the quotient topology, and let f : Y → X be the canonical
projection. It is the coequalizer of s, t : R→ Y in the category of topological spaces
and continuous maps. We claim that for all i ∈ I, the map f |Yi : Yi → f(Yi) is
a homeomorphism. First, it is a bijection, since the maps s|Ui,i

: Ui,i → Yi and
tUi,i

: Ui,i → Yi necessarily are equal. For they are both open immersions and the
diagonal map ∆: Yi → Yi×Yi factors through (s, t)|Ui,i

: Ui,i → Yi×Yi, since (s, t)
is an equivalence relation. Second, it is an open map. Indeed, if V ⊂ Yi is an open
subset, then so is the subset

f−1(f(V )) =
∐
j∈I(t ◦ s−1)(V ∩ Ui,j) ⊂

∐
j∈I Yj = Y.

This shows that f |Yi
: Yi → f(Yi) ⊂ X is a homeomorphism.

Finally, the sheaf of rings OX given by the equalizer

OX f∗OY h∗OR,
f]

//
f∗s

]

//

f∗t
]

//

where h = f ◦ s = f ◦ t, makes (X,OX) a smooth manifold and makes the diagram
in the statement a coequalizer in the category of smooth manifolds and morphisms
of smooth manifolds. �

Remark 11. The morphisms s, t : (R,OR)→ (Y,OY ) in Proposition 10 are étale, but
they are a very particular kind of étale morphisms. We would like the result to hold
more generally for every étale equivalence relation, that is, for every equivalence
relation (s, t) : (R,OR)→ (Y ×Y,OY×Y ) such that s and t are étale, but this is not
true.5 To remedy this, one builds the larger category of “smooth spaces” in which
the result holds for every étale equivalence relation.

5A counterexample is (s, t) : Z× S1 → S1 × S1, where s(n, z) = z and t(n, z) = wnz, where w

is some fixed irrational roation of the circle S1.
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Example 12. (1) Let A1
k = (R,Osm

R ) be the affine line, let A1
k r {0} ⊂ A1

k be the
open complement of {0} ⊂ A1

k, and let (s, t) be the equivalence relation with

R = R11 tR12 tR22 = A1
k t (A1

k r {0}) t A1
k Y = Y1 t Y2 = A1

k t A1
k

s //

t
//

where the maps s, t : R12 → Y1 are defined to be the canonical inclusion and the
map t 7→ t−1, respectively. The coequalizer (X,OX) is the projective line P1

k.

(2) We consider the equivalence relation defined as in (1), except that we now define
both s, t : R12 → Y1 to be the canonical inclusion. The coequalizer (X,OX) is an
affine line with a double point at the origin. The space X is not Hausdorff.

We will use Proposition 10 to construct the tangent bundle of a smooth manifold.
It is a functor that to a smooth manifold (X,OX) assigns a morphism

T (X,OX) = (TX,OTX)
pX // (X,OX)

of smooth manifolds together with a structure of real vector space on the fiber

T (X,OX)x = p−1X (x) ⊂ T (X,OX)

for all x ∈ X, and that to a morphism f : (Y,OY )→ (X,OX) of smooth manifolds
assigns a commutative diagram of morphisms of smooth manifolds

T (Y,OY )
df
//

pY

��

T (X,OX)

pX

��

(Y,OY )
f
// (X,OX)

such that for all y ∈ Y with image x = f(y) ∈ X, the induced map of fibers

T (Y,OY )y
dfy
// T (X,OX)x

is linear. The “chain rule” is the statement that this assignment is a functor.

First, if U ⊂ Rm is an open subset, then we define

T (U,Osm
U ) = (U × Rm,Osm

U×Rm)
pU // (U,Osm

U )

to the projection on the first factor. We define the structure of real vector space
on the fiber T (U,Osm

U )x by (x,v) + (x,w) = (x,v + w) and (x,v) · a = (x,v · a),
where v,w ∈ Rm and a ∈ R. If f : (V,Osm

V ) → (U,Osm
U ) is a morphism of smooth

manifolds with U ⊂ Rm and V ⊂ Rn open, then we define

T (V,Osm
V )

df
// T (U,Osm

U )

to be the morphism of smooth manifolds defined by

df(y,v) = (f(y), Dvf(y)),

where y ∈ V and v ∈ Rn, and where

Dvf(y) = limh→0(f(y + vh)− f(y))/h

is the directional derivative. If (e1, . . . , em) and (e1, . . . , en) are the standard bases
for Rm and Rn, respectively, and if we write f(y) =

∑m
i=1 eifi(y), then

Dej
f(y) =

∑m
i=1 ei · (∂fi/∂yj)(y).



SMOOTH MANIFOLDS 9

It follows that the diagram

T (V,Osm
V )

df
//

pV

��

T (U,Osm
U )

pU

��

(V,Osm
V )

f
// (U,Osm

U )

commutes, and that for all y ∈ V with image x = f(y) ∈ U , the induced map

T (V,Osm
V )y

dfy
// T (U,Osm

U )x

is linear. Moreover, the chain rule from calculus shows that

d(f ◦ g) = df ◦ dg

for all composable morphisms of smooth manifolds

(W,Osm
W )

g
// (V,Osm

V )
f
// (U,Osm

U )

with U ⊂ Rm, V ⊂ Rn, and W ⊂ Rp.
Second, given any smooth manifold (X,OX), we let (Yi, hi : Yi → Vi)i∈I be a

family of charts with Vi ⊂ Rni . The canonical map

(Y,OY ) =
∐
i∈I(Yi,OX |Yi

)
f
// (X,OX)

is étale, the canonical inclusion

(R,OR) = (Y,OY )×(X,OX) (Y,OY ) (Y,OY )× (Y,OY )
(s,t)

//

is an equivalence relation, and the diagram

(R,OR)
s //

t
// (Y,OY )

f
// (X,OX)

is a coequalizer. We have Y =
∐
i∈I Yi and R =

∐
(i,j)×I×I Ui,j with Ui,j = Yi ∩Yj ,

so the existence of the coequalizer also is a consequence of Proposition 10. We now
define pX : T (X,OX)→ (X,OX) to be the induced morphism of coequalizers

T (R,OR)
ds //

dt
//

pR

��

T (Y,OY )
df
//

pY

��

T (X,OX)

pX

��

(R,OR)
s //

t
// (Y,OY )

f
// (X,OX),

and we give the fiber T (X,OX)x the unique structure of real vector space such that
for any y ∈ Y with f(y) = x, the induced map of fibers

T (Y,OY )y
dfy
// T (X,OX)x

is a linear isomorphism. To see that pX : T (X,OX)→ (X,OX) is well-defined, up to
canonical isomorphism, one has to prove two things. First, one much show that the
equivalence relation (ds, dt) satisfies the hypothesis of Proposition 10, which is not
difficult. Second, if p′X : T (X,OX)′ → (X,OX) is obtained as above but beginning
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with a different choice of family of charts (Y ′i , h
′
i : Y

′
i → V ′i )i∈I′ , then one must

produce a canonical diffeomorphism g making the diagram

T (X,OX)
g
//

pX

��

T (X,OX)′

p′X
��

(X,OX) (X,OX)

commute. This is more delicate, since we have not characterized the tangent bundle
by some universal property, and therefore, there is not a unique choice of “canonical”
diffeomorphism.6 We will not go further into this here.

Definition 13. A tangent vector field on a smooth manifold (X,OX) is a morphism
of smooth manifolds v : (X,OX)→ T (X,OX) such that pX ◦ v = idX .

We note that the value of the map v at x ∈ X is a vector v(x) ∈ T (X,OX)x in
a vector space that varies with x. We give the set Vect(X,OX) of tangent vector
fields on (X,OX) the structure of a left Γ(X,OX)-module, where

(v + w)(x) = v(x) + w(x)

(ϕ · v)(x) = ϕ(x) · v(x)

for v,w ∈ Vect(X,OX) and ϕ ∈ Γ(X,OX).

Let (X,OX) be a smooth manifold, and let v ∈ Vect(X,OX) be a tangent vector
field. The directional derivative along v is a k-linear map of sheaves

OX
Dv // OX ,

which we now define. We must define, for all U ⊂ X open, a k-linear map

Γ(U,OX) Γ(U,OX)
Dv,U

//

such that for all U ⊂ V ⊂ X open, the diagram

Γ(V,OX) Γ(V,OX)

Γ(U,OX) Γ(U,OX)

Dv,V
//

ResVU
��

ResVU
��Dv,U

//

commutes. We first note that the smooth tangent vector field v on (X,OX) restricts
to a smooth tangent vector field v|U on (U,OX |U ) for all U ⊂ X open. Indeed, if
j : U → X is the open immersion of U in X, then the diagram

T (U,OX |U )
dj
//

pU

��

T (X,OX)

pX

��

(U,OX |U )
j
// (X,OX)

is cartesian, and therefore, we may define v|U : (U,OX |U )→ T (U,OX |U ) to be the
unique morphism such that dj ◦v|U = v ◦ j and pU ◦v|U = idU . Next, we may view

6 It would of course be much better to give a global definition of the tangent bundle similar

to the definition pX : T (X,OX) = Spec(SymOX
(Ω1

X/k
))→ (X,OX) in algebraic geometry.
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ϕ ∈ Γ(U,OX) as a morphism of smooth manifolds ϕ : (U,OX |U )→ (R,Osm
R ), so we

have the commutative diagram

T (U,OX |U )
dϕ
//

pU

��

T (R,OR)

p R

��

U
ϕ

// R.

We also have a tangent vector field w on (R,Osm
R ) defined by w(t) = (t, e1), and

we now define Dv,U (ϕ) ∈ Γ(U,OX |U ) to be the unique element such that

dϕ ◦ v|U = w ·Dv,U (ϕ).

It is clear from the definition that the map Dv,U is k-linear and that if U ⊂ V ⊂ X
are open subsets, then Dv,U ◦ ResVU = ResVU ◦Dv,V . Therefore, we have defined a
k-linear map of sheaves Dv : OX → OX as desired.

In general, given a morphism f : (X,OX)→ (S,OS) of locally ringed spaces and
a right OX -module F, an f∗OS-linear morphism of sheaves

OX
δ // F

is an f∗OS-linear derivation if for all U ⊂ X open and ϕ,ψ ∈ Γ(U,OX),

δU (ϕ · ψ) = δU (ϕ) · ψ + δU (ψ) ◦ ϕ.

We write DerOS
(OX ,F) for the set of f∗OS-linear derivations δ : OX → F. It has a

structure of abelian group given by the pointwise sum of derivations. Moreover, if
h : F → F is an OX -linear morphism and if δ : OX → F is an f∗OS-linear derivation,
then h ◦ δ : OX → F again is an f∗OS-linear derivation. So (h, δ) 7→ h ◦ δ defines a
structure of left EndOX

(F)-module on the abelian group DerOS
(OX ,F).

Lemma 14. If (X,OX) is a smooth manifold, then for all v ∈ Vect(X,OX), the
directional derivative Dv : OX → OX is a k-linear derivation.

Proof. Given v ∈ Vect(X,OX), an open subset U ⊂ X, and a point x ∈ U , we
give a formula for Dv,U (ϕ)(x) for ϕ ∈ Γ(U,OX |U ). There exists a smooth curve
γ : (I,Osm

I )→ (U,OX |U ) defined on an open interval 0 ∈ I ⊂ R such that γ(0) = x
and such that, in the diagram

T (I,Osm
I )

dγ
//

pI

��

T (U,OX |U )
dϕ
//

pU

��

T (R,OR)

p R

��

(I,OI)
γ
// (U,OX |U )

ϕ
// (R,Osm

R ),

we have (dγ ◦w|I)(0) = v|U (x) = (v|U ◦ γ)(0). Therefore,

(dϕ ◦ v|U )(x) = (dϕ ◦ v|U ◦ γ)(0) = (dϕ ◦ dγ ◦w|I)(0) = (d(ϕ ◦ γ) ◦w|I)(0),

from which we obtain the formula

Dv,U (ϕ)(x) = (ϕ ◦ γ)′(0).
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Hence, for all ϕ,ψ ∈ Γ(U,OX), we have

Dv,U (ϕ · ψ)(x) = ((ϕ · ψ) ◦ γ)′(0) = ((ϕ ◦ γ) · (ψ ◦ γ))′(0)

= (ϕ ◦ γ)′(0) · (ψ ◦ γ)(0) + (ψ ◦ γ)′(0) · (ϕ ◦ γ)(0)

= Dv,U (ϕ)(x) · ψ(x) +Dv,U (ψ)(x) · ϕ(x),

and since x ∈ U was arbitrary, we conclude that

Dv,U (ϕ · ψ) = Dv,U (ϕ) · ψ +Dv,U (ψ) · ϕ

as desired. �

We now obtain the promised global description of the left Γ(X,OX)-module of
tangent vector fields.

Proposition 15. Let (X,OX). The directional derivative

Vect(X,OX)
D
// Derk(OX ,OX)

is an isomorphism of left Γ(X,OX)-modules.

Proof. For all open subsets U ⊂ V ⊂ X, we have a commutative diagram

Vect(V,OX |V )
DV
//

ResVU
��

Derk(OX |V ,OX |V )

ResVU
��

Vect(U,OX |U )
DU
// Derk(OX |U ,OX |U ),

so the family (DU )U⊂X is a morphism of presheaves of left OX -modules

Vect(X,OX)
D
// Derk(OX ,OX).

Both of these presheaves are in fact sheaves, because they are defined in terms of
by local conditions. We will prove that this morphism of sheaves is an isomorphim.
Since the map in the statement is obtained from this morphism of sheaves by
applying the global sections functor Γ(X,−), this will prove the proposition.

Since the statement that the map of sheaves in question is an isomorphism is
local on X, we may assume that (X,OX) is equal to (U,Osm

U ) with U ⊂ Rn open.
We may further assume that U ⊂ Rn is convex, since every open subset of Rn
admits a covering by convex open subsets. So it suffices to prove that for U ⊂ Rn
convex open, the directional derivative

Vect(U,Osm
U )

D
// Derk(Osm

U ,Osm
U )

is an isomorphism of left Γ(U,Osm
U )-modules. The left-hand Γ(U,Osm

U )-module is
free of rank n, and a basis is given by the family (w1, . . . ,wn) of vector fields
defined by wi(x) = (x, ei), where (e1, . . . , en) is the standard basis of Rn. By the
definition of the directional derivative, we have

Dwi
(ϕ) = ∂ϕ/∂xi,
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so we must prove that the family (∂/∂x1, . . . , ∂/∂xn) of derivations is a basis of the
left Γ(U,Osm

U )-module Derk(Osm
U ,Osm

U ). It is linearly independent, since

∂xi/∂xj =

{
1 if i = j

0 if i 6= j,

and to show that it also generates the left Γ(U,Osm
U )-module Derk(Osm

U ,Osm
U ), we

prove that for all δ ∈ Derk(Osm
U ,Osm

U ), the following identity holds,

δ =
∑n
i=1 δ(xi) · ∂/∂xi.

It suffices to show that for all δ ∈ Derk(Osm
U ,Osm

U ), ϕ ∈ Γ(U,Osm
U ), and a ∈ U ,

δ(ϕ)(a) =
∑n
i=1 δ(xi)(a) · (∂ϕ/∂xi)(a).

Indeed, the sheaf F = Osm
U has the special property that a section ψ ∈ Γ(U,Osm

U ) is
zero if and only if all its values ψ(a) ∈ F(a) = Fa ⊗Osm

U,a
k(a) are zero. Now, since

we assumed that the open subset U ⊂ Rn is convex, Corollary 21 below shows that
there exist unique ϕi,j ∈ Γ(U,Osm

U ) such that

ϕ(x) = ϕ(a) +
∑n
i=1(xi − ai)(∂ϕ/∂xi)(a) +

∑n
i,j=1(xi − ai)(xj − aj)ϕi,j(x),

and since δ is a k-linear derivation, the desired identity ensues. �

Example 16. If (X,OX) is a smooth manifold, and and if h : U → V is a chart with
V ⊂ Rn open, then the family of derivations (δ1, . . . , δn), where

δi(ϕ)(x) = (∂(ϕ ◦ h−1)/∂xi)(h(x)),

is a basis of the left Γ(U,OX)-module Derk(OX |U ,OX |U ). Hence, there is a unique
basis (v1, . . . ,vn) of the left Γ(U,OX)-module Vect(U,OX |U ) such that Dvi

= δi.

According to Proposition 15, tangent vector fields may analogously be defined
to be k-linear derivations δ : OX → OX . This definition has the advantage of being
truly global. We define the “Lie bracket”

Derk(OX ,OX)⊗k Derk(OX ,OX) Derk(OX ,OX)
[−,−]

//

to be the map that to δ1 ⊗ δ2 assigns the k-linear morphism

[δ1, δ2] = δ1 ◦ δ2 − δ2 ◦ δ1.

To verify that [δ1, δ2] ∈ Derk(OX ,OX), we let ϕ,ψ ∈ Γ(U,OX |U ) and calculate

[δ1, δ2](ϕ · ψ) = δ1(δ2(ϕ · ψ))− δ2(δ1(ϕ · ψ))

= δ1(δ2(ϕ) · ψ + ϕ · δ2(ψ))− δ2(δ1(ϕ) · ψ + ϕ · δ1(ψ))

= δ1(δ2(ϕ)) · ψ + δ2(ϕ) · δ1(ψ) + δ1(ϕ) · δ2(ψ) + ϕ · δ1(δ2(ψ))

− δ2(δ1(ϕ)) · ψ − δ1(ϕ) · δ2(ψ)− δ2(ϕ) · δ1(ψ)− ϕ · δ2(δ1(ψ))

= [δ1, δ2](ϕ) · ψ + ϕ · [δ1, δ2](ψ).

It is clear that the map [−,−] is k-linear in both arguments so that we obtain
the stated map. A similar and equally straightforward calculation shows that given
three k-linear derivations δ1, δ2, and δ3, the “Jacobi identity”

[[δ1, δ2], δ3] + [[δ2, δ3], δ1] + [[δ3, δ1], δ2] = 0
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holds. This makes Derk(OX ,OX) a Lie algebra over k.7

We proved earlier that the category of smooth manifolds and morphisms of
smooth manifolds has finite products. It does not have all fiber products, but the
implicit function theorem shows that it does have some fiber products. Given a
cartesian square of smooth manifolds and morphism of smooth manifolds

(Y ′,OY ′)
g′
//

f ′

��

(Y,OY )

f

��

(X ′,OX′)
g
// (X,OX),

we say that f ′ is the base-change of f along g. If such a square exists for given f
and g, then we say that the base-change of f along g exists.

A morphism of smooth manifolds f : (Y,OY )→ (X,OX) is a submersion8 (resp. an
immersion) if for all y ∈ Y with image x = f(y) ∈ X, the differential

T (Y,OY )y
dfy
// T (X,OX)x

is surjective (resp. injective). We note that, in this case, it follows from linear algebra
that dim(y) ≥ dim(x) (resp. dim(y) ≤ dim(x)).

Theorem 17 (Implicit function theorem). In the category of smooth manifolds
and morphisms of smooth manifolds, the base-change of a submersion along any
morphism exists and is a submersion.

Proof. This is based on the inverse function theorem. It states that a morphism of
smooth manifolds, which is both an immersion and a submersion, is étale. The proof
has a number of steps. First, if (Y,OY ) = (X × Z,OX×Z) and f is the projection
on the first factor, then the base-change along any g exists with Y ′ = X ′×Z, with
f ′ the projection on the first factor, and with g′ = g × idZ . Second, the inverse
function theorem shows if f is any submersion, then for all y ∈ Y , we find open
neighborhoods y ∈ V ⊂ Y , x = f(y) ∈ U ⊂ X, and 0 ∈ W ⊂ Rp together with a
diffeomorphism h making the diagram

(V,OY |V )
h //

f |U
��

(U ×W,OX×W |U×W )

p

��

(U,OX |U ) (U,OX |U ),

where p is the canonical projection, commute. Hence, it follows from the first step
that the base-change of f |U along any morphism g exists and is a submersion.
Finally, we use Proposition 10 to glue together the local solutions obtained in the
second step to a global solution. To do so, we also use the fact that the base-change
of an open immersion along any morphism exists and is an open immersion and the
fact that base-change along an open immersion preserves both coequivalizers and
submersions. �

7This Lie algebra is infinite dimensional, unless X is finite. We will define the Lie algebra of

a Lie group to be a subalgebra of this Lie algebra.
8 In algebraic geometry, the analogue of submersions are called smooth morphisms. It is for

this reason, that I say “morphism of smooth manifolds” instead of “smooth map.”
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Remark 18. Let f : (Y,OY ) → (X,OX) be a morphism of smooth manifolds. We
say that y ∈ Y is a regular point of f if dfy is surjective and that x ∈ X is a
regular value of f if every y ∈ Y with f(y) = x is a regular point. Therefore, given
a morphism g : (X ′,OX′) → (X,OX) for which there exists g(X ′) ⊂ U ⊂ X open
such that every x ∈ U is a regular point of f , then the base-change of f along g
exists and is equal to the base-change of f |f−1(U) along g.

Example 19. Let Y = Mn(R), and let X ⊂ Mn(R) be the subset of symmetric
matrices. So Y and X are both real vector spaces of dimension n2 and (n+ 1)n/2,
respectively, which we view as smooth manifolds of the same dimensions. The map
f : (Y,Osm

Y )→ (X,Osm
X ) defined by f(A) = A∗A is smooth, and we claim that

T (Y,Osm
Y )A

dfA // T (X,Osm
X )f(A)

is surjective for all A ∈ Y with f(A) = E ∈ X. To see this, use the identity maps
of Y and X as charts and calculate

dfA(B) = limh→0(f(A+ hB)− f(A))/h

= limh→0((A+ hB)∗(A+ hB)−A∗A)/h

= limh→0(A∗A+ hA∗B + hB∗A+ h2B∗B −A∗A)/h

= A∗B +B∗A.

Now, if f(A) = A∗A = E, then given C = C∗ ∈ X, we set B = 1
2AC and calculate

dfA(B) = A∗B +B∗A = 1
2A
∗AC + 1

2C
∗A∗A = 1

2 (C + C∗) = C.

So the implicit function theorem shows that the base-change

(O(n),OO(n))
g′
//

f ′

��

(Y,Osm
Y )

f

��

({E},O{E})
g
// (X,Osm

X )

exists; see Remark 18. Hence, the subspace O(n) ⊂ Mn(R) of orthogonal matrices
has a structure of smooth manifold of dimension n2 − (n+ 1)n/2 = n(n− 1)/2.

Appendix: Hadamard’s lemma

We have used the following result, commonly referred to as Hadamard’s lemma.

Lemma 20. Let U ⊂ Rn be an open subset that is star-convex with respect to
a ∈ U , and let ϕ : U → R is a smooth function. Then there exists unique smooth
functions ϕi : U → R such that for all x ∈ U ,

ϕ(x) = ϕ(a) +
∑n
i=1(xi − ai)ϕi(x).

Moreover, for all 1 ≤ i ≤ n, ϕi(a) = (∂ϕ/∂xi)(a).



16 SMOOTH MANIFOLDS

Proof. We define h : [0, 1]→ R by h(t) = ϕ(a+ (x− a)t), which is possible by the
assumption that U ′ be star-convex with respect to a, and calculate that

ϕ(x)− ϕ(a) = h(1)− h(0) =
∫ 1

0
(dh/dt)(t)dt

=
∫ 1

0

∑n
i=1(∂ϕ/∂xi)(a+ (x− a)t)(xi − ai)dt

=
∑n
i=1(xi − ai)

∫ 1

0
(∂ϕ/∂xi)(a+ (x− a)t)dt.

So the lemma holds with ϕi(x) =
∫ 1

0
(∂ϕ/∂xi)(a+ (x− a)t)dt. �

Corollary 21. Let U ⊂ Rn be an open subset that is star-convex with respect to
a ∈ U , and let ϕ : U → R is a smooth function. Then there exists unique smooth
functions ϕi,j : U → R such that for all x ∈ U ,

ϕ(x) = ϕ(a) +
∑n
i=1(xi − ai)(∂ϕ/∂xi)(a) +

∑n
i,j=1(xi − ai)(xj − aj)ϕi,j(x).

Proof. We first write ϕ(x) as in the statement of Lemma 20 and the apply the
lemma again to write each of the functions ϕi : U → R as

ϕi(x) = ϕi(a) +
∑n
j=1(xj − aj)ϕi,j(x) = (∂ϕ/∂xi)(a) +

∑n
j=1(xj − aj)ϕi,j(x)

with ϕi,j : U → R smooth. �


