SMOOTH MANIFOLDS

We recall that a topological group is defined to be a group G = (G, u, t) together
with a topology on the set G such that the maps yu: G x G — G and t: G — G are
continuous. Similarly, a Lie group is defined to be a group G = (G, i, t) together
with a structure of smooth manifold on the set G such that the maps u: GXG — G
and ¢: G — G are smooth. We first discuss smooth manifolds.

Smooth manifolds belong to geometry rather than topology. Geometric objects
are pairs (X, Ox) of a topological space X and a sheaf of rings Ox on X, where
for U C X open, the set T'(U, Ox) of sections of Ox over U should be thought of
as the set “geometric functions” on U. The geometric functions that we allow will
depend on the geometric situation that we consider. For instance, we could consider
“smooth functions,” “analytic functions,” or “algebraic functions,” but note that we
have not yet assigned any precise mathematical meaning to these terms. Moreover,
in some situations, the elements of I'(U, Ox) may not be functions in the usual
sense. A map of geometric objects f: (Y,0y) — (X,0x) is a pair (f, f*) of a
continuous map f: Y — X and a map of sheaves of rings f: Ox — f.Oy. Let us
now define sheaves properly.

Let X be a topological space, and let X7z, be the category, whose objects are
the open subsets U C X, and whose morphisms are

Homy, (U, V) = {{mclg} iUV

U ifU ¢ V.
So if U C V, then there is a unique morphism incl‘(j: U—=V,and if U ¢ V, then
there are no morphisms from U to V. A presheaf of sets on X is a defined to be
a functor F: X,° — Set. To specify a functor F: X,° — Set, we must specify
for every open subset U C X, a set F(U), and for every inclusion U C V of open
subsets of X, a map F(incly;): F(V) — F(U). We may think of F(U) as the set of
“functions defined on U” and of F(incl};) as the map that to a “function defined
on U” assigns the restriction of this function to a “function defined on V.” To
emphasize this interpretation, we also write I'(U,F) = F(U) and call it the set of
sections of F over U, and we write Resy; = F(incl);) and call it the restriction from
V to U. A presheaf F: X7 — Set is defined to be a sheaf if it satisfies the following
sheaf condition: For every covering (U; — U);cs of an open subset U C X by open
subsets U; C U, the diagram

h a
FU) —— 1L, F(i) — [, jyer<r FUiNT;)

is an equalizer. Here h is the unique map such that for all ¢ € I,

pr,oh = Resgi,
1
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and a and b are the unique maps such that for all (4,5) € I x I,
pr;yoa = Resgijj opr,;
pr(; ;ob= ResgfmUj opr; .
That the diagram is an equalizer means that for all (¢;)icr C [];c; F(Us) such that

a((wi)ier) = b((#i)ier);
there exists a unique ¢ € F(U) such that

(i)ier = (Resg, (9))ier-
Informally, the sheaf condition expresses that if we are given “functions” ¢; on U;
for all i € I such that o;|u,nv; = @jlv,nu, for all (i,5) € I x I, then there exists a
unique “function” ¢ on U such that ¢; = ¢|y, for all i € I.

Ezxample 1. Let X be a topological space, and let kK = R or k = C. The presheaf
O™ : X8 — Set, where I'(U, O™) is defined to be the set of continuous functions

@: U — k, and where Res);: T(V,09™) — T(U,0%™) is defined to be the map
Resg(go) =po inclg, is a sheaf, because “being continuous” is a local property.

We define the category of presheaves of sets on X to be the category
PreShv(X) = Fun(X," , Set),

Zar>

whose objects are functors and whose morphisms are natural transformations, and
we define the category of sheaves on X to be the full subcategory

Shv(X) C PreShv(X),

whose objects are the sheaves on X. One can prove that there is an adjunction
PreShv(X) ¢ > Shv(X)

where the right adjoint functor ¢x is the canonical inclusion of the subcategory of
sheaves in the category of presheaves, and where the left adjoint functor assx takes
a presheaf to its associated sheaf. This functor is called “sheafification.”

Ezample 2. Let X be a topological space, and let F' € PreShv(X) be the presheaf of
constant functions, F(U) = {¢: U — k| ¢ constant}. It is not a sheaf, since “being
constant” is not a local property. The associated sheaf assx (F) € Shv(X) is the
sheaf of locally constant functions, assx (F)(U) = {¢: U — R | ¢ locally constant}.

It is a fundamental result of Grothendieck! that “sheafification” preserves finite
limits. (The inclusion functor ¢x preserves all limits, as does every right adjoint
functor.) In particular, it preserves finite products, which implies that it takes
“presheaves of rings” to “sheaves of rings.” Indeed, we define a presheaves of rings
and sheaves of rings to be ring objects in PreShv(X) and Shv(X), respectively.
A ring object in a category € with finite products is defined to be a sixtuple
(R,+, -,—,0,1) of an object R € €, two morphisms +, - : R x R — R, one mor-
phism —: R — R, and two morphisms 0,1: e — R that satisfy the usual ring
axioms. Here the empty product e = R% € C is a terminal object.

L This result and many results are consequences of Grothendieck’s theorem that, in the category
of sets, filtered colimits and finite limits commute.
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Let f: Y — X be a continous map. If U C X is open, then f~1(U) C Y is open,
so we obtain a functor f~': Xza, — YZzar. The functor

PreShv(Y) —”— PreShv(X)
is defined by f,(G) = G o f~! has a left adjoint functor

PreShv(X) —— PreShv(Y)
given by left Kan extension along f~*: X;P — YP. More concretely, we have
fPE) (V) = colimyvycu F(U),
where the colimit is indexed by the opposite of the “slice category”
(Xzar) /51 Xvg,, 1V}

with objects open subsets U C X such that V C f~}(U) and with morphisms
inclusions among such open subsets. It is a filtered category, so fP preserves finite
limits by Grothendieck’s theorem. The functor f, preserves sheaves in the sense
that there is a unique functor f, making the diagram

Shv(Y) —" s Shv(X)

PreShy(Y) —— PreShv(X)

commute, but the functor fP does not. However, the functor

Shv(X) —L Shv(Y)
defined by f* = assy of? o1x is left adjoint of f.. We call f* the inverse image
functor and we call f, the direct image functor. So we have an adjunction

*

Shv(X) 7 Shv(Y)
I

and the functor f* preserves finite limits. In particular, it preserves ring objects.

Ezample 3. (1) Let j: U — X be the inclusion of an open subset. It is an open
map in the sense that if V' C U is open, then so is V' = j(V) C X. This implies
jP: PreShv(X) — PreShv(U) preserves sheaves and that j*: Shv(X) — Shv(U) is
given by 7*(F)(V) = F(j(V)). Therefore, we also write Fly = j*(F).

(2) Let iy: {z} — X be the inclusion of a point and note that Shv({z}) ~ Set.
Indeed, a presheaf G: {z}z., — Set is a sheaf if and only if G(() is a one-element set,
50, up to unique isomorphism, a sheaf § € Shv({z}) is determined by the set §({z}).
We say that F, = 5 (F)({z}) is the stalk of F € Shv(X) at € X. Concretely,
we have F,, = colimcy F(U), where the colimit is indexed by the opposite of the
category of open neighborhoods z € U C X under inclusion. One can prove that a
morphism ~: F — F in Shv(X) is an isomorphism if and only if the induced map
of stalks h,: F, — F., is an isomorphism for all z € X2

2 We refer to this statement by saying that the Zariski topos Shv(X) has “enough points.”
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The sheaf O™ continuous k-valued functions on X is a sheaf of commutative
rings, and therefore, its stalk Ocont at ¢ € X is a commutative ring.
Lemma 4. For every x € X, Og?r;t 18 a local ring.
Proof. The elements h € O™ are germs of continuous k-valued functions at z € X,
that is, equivalence classes of pairs (U, ¢) of an open neighborhood z € U C X and
a continuous function ¢: U — k, where two such pairs (U, 1) and (Us, p2) are
equivalent, if there exists © € V' C U; N Uy open such that ¢1]|y = pa|y. The
map if 0%y — k that to the class of (U,p) assigns ¢(z) is a surjective ring
homomorphism to a field, so its kernel m, C Ogg‘;t is a maximal ideal. Now, if
h € 0% and h ¢ m,, then we can represent h by a palr (U, ) such that p(u) #0
for all u € U. This shows that h is invertible with A~! given by the class of the pair
(U, ), where 9(u) = ¢(u)~1. This proves the lemma. O

Let f: Y — X be a continuous map. We define the morphism
fﬁ
ogémt f*ogﬁ)nt
of sheaves of rings on X as follows. If U C X is open with V = f~1(U) C Y, then

#
T(U, 0™) 120 D(U, £,05) = T(V, 05

is the ring homomorphism that to ¢: U — k assigns @o f|y: V — k. By adjunction,
it determines and is determined by a morphism

f*oggnt fﬁ ; Ocyont.
of sheaves of rings on Y. We will abuse notation and write also f¥ instead of f# for
this map. The induced map of stalks at y € Y is a ring homomorphism
fﬁ
Ocont Z Ocont (f o1 )*Oggnt ~ i;f*ogéj“t L ZZOY — O(}:’?Zt’

where the indicated isomorphisms are the unique natural isomorphisms between
different choices of left adjoint functors of the functor iz, = (f 0 4y)s.

Lemma 5. The ring homomorphism fﬁ Ocont — (‘Jcont is a local homomorphism.

Proof. That fﬁ is a local homomorphism means that it is a ring homomorphism
and that ( fg)_l(my) = m,, or equivalently, that the following diagram commutes.

cont v
OX T k
J/fg
i
Ocont "y
Yy ————k

Now, if h € OCOI;F is represented by the pair (U, ¢), where z € U C X is an open
neighborhood and ¢: U — k is a continuous map, then y € V = f~1(U) C Y is an
open neighborhood, and the pair (V,p o f|y) represents fg( ) € Oy,y. So

i (f5(h) = (o flv)(y) = ¢(f(y) = wl(z) = i&(h),

as desired. O
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We will consider other kinds of “functions,” but we always want them to retain
the properties that we proved in Lemmas 4 and 5 for continuous functions. We
encode these properties in the following definition.

Definition 6. (1) A locally ringed space is a pair (X,0x) of a topological space
X and a sheaf of rings Ox such that for all x € X, the stalk Ox , is a local ring.
(2) A morphism of locally ringed spaces is a pair (f, f*): (Y, 0y) — (X,0x) of a
continuous map f: Y — X and a morphism f¥: Ox — f.Oy of sheaves of rings on
X such that for all y € Y, the induced map of stalks fg: Oy, — Ox f(y) 1s a local
ring homomorphism.

If (X, 0Ox) is a locally ringed space, if U C X is open, and if ¢ € T'(U,Ox), then
we define its value p(z) at € U to be the image of ¢ by the composite map

. it
L(U,0x) —2—= Ox.p —— k(z) = Ox »/m,.

We note that the value ¢(z) € k() is an element of a field k(z) that may vary with
2 € U. It may also happen that ¢ # 0 even though p(z) =0 for all z € U.

We now define the “geometric functions” relevant for smooth manifolds, namely,
the smooth functions. However, our discussion below applies mutatis mutandis to
holomorphic functions and complex manifolds and to analytic functions and real
analytic manifolds. Let U C R™ be an open subset. A function ¢: U — R is defined
to be smooth if the partial derivatives 0%¢/0z;, ...0x;, : U — R exist and are
continuous for all £ > 0 and 1 < 4y,...,ir < n. The sheaf of standard smooth
functions on U is defined to be the subsheaf Of* C 0™ given by

L(V,0i™) = {¢: V — R | ¢ smooth} C I'(V,0§")
for all V' .C U open. We say that a locally ringed space (X, Ox) is an affine smooth
manifold, if there exists an isomorphism of locally ringed spaces
(.15
(X, 0x) —— (U, 07")
with U C R™ open. The number n is uniquely determined by (X, Ox) and is called
the dimension of the affine smooth manifold.

Definition 7. A smooth manifold® is a locally ringed space (X,Ox) for which
there exists an open covering (U; — X);es such that for all ¢ € I, (U;, Ox|y,) is
an affine smooth manifold. A morphism f: (Y,0y) — (X,0x) between smooth
manifolds is a morphism of locally ringed spaces.

Remark 8. (1) If (X, Ox) is a smooth manifold, then Ox is canonically isomorphic
to a subsheaf of O2™. Indeed, by definition, this is true locally, so by the sheaf
condition, it is also true globally. Moreover, if (f, f#): (Y,0y) — (X,0x) is a
morphism between smooth manifolds, then the diagram

"
Ox S AN f:Oy

| [

fﬂ
O ggnt f* O g:;)nt

31n the literature, the requirement that X be Hausdorff is often included in the definition of
a smooth manifold, but we will not do so. Note that “being Hausdorff” is not a local property.
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commutes, and therefore, the top horizontal map is uniquely determined by the
bottom horizontal map. So we may view “being smooth” as the property of the
continuous map f:Y — X that a map ff: Ox — f.Oy making the diagram
commute exist. We also note that an isomorphism between smooth manifolds is
traditionally called a diffeomorphism.

(2) We define the dimension of a smooth manifold (X, Ox) to be the map

dim
X ———Z>o

that to € X assigns n = dim(x), if there exists x € U C X open with (U, Ox|v)
an affine smooth manifold of dimension n. It is well-defined and locally constant,
and if it is constant with value n, then we say that (X, Ox) has pure dimension n or
that (X, Ox) is a smooth n-manifold. We define a chart of (X,0x) around x € X
to be a pair (U, h) of an open neighborhood z € U C X and a diffeomorphism

(U, 0x|v) —= (V,03)

with V' c R4™(®) an open subset.

Proposition 9. The category of smooth manifolds and their morphisms admits
finite products. More precisely, if f: (Z,0z) = (X,0y) and g: (Z,0z) — (Y,0y)
are morphisms between smooth manifolds, then, up to unique isomorphism, there
is a unique sheaf of rings Oxxy on X XY such that (X xY,0xxy) is a smooth
manifold and such that, in the diagram

(Z,02)

I

(X,0x) +—— (X XY,0xxy) —— (Y, 0y),

the projections p and q and the unique map (f,g) that makes the diagram commute
are morphisms of smooth manifolds.

Proof. Up to isomorphism, there is a unique sheaf Oxxy on X X Y such that given
(z,y) € X xY and charts f: (U,Ox|y) = (4,0%") and g: (V,Oy|y) — (B, 0%")
around x € X and y € Y, respectively, the map

f sm
(U X V,0xxy|uxv) =L (A x B, 0 )

is a chart around (x,y) € X x Y.* Since the subsets of the form U x V C X x Y,
where U C X and V C Y are open, form a basis for the product topology, this
shows that (X x Y,Oxxy) is a smooth manifold. That the maps p, ¢, and (f,g)
are smooth can be checked locally in charts, where it is clear. O

One can construct new smooth manifolds is by gluing existing smooth manifolds
together. To state the result, we introduce some terminology. In general, we define

4 There is a canonical map Ox ®k Oy — Oxxy of sheaves of k-algebras on X X Y, but it is
not an isomorphism. Rather the target is a suitable completion of the source.
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a morphism (s,t): R — Y XY in a category € that admits finite products to be an
equivalence relation if for all Z € @, the induced map of sets
(s:t)
Home(Z, R) ——— Home(Z,Y) x Home(Z,Y)
exhibits Home(Z, R) as an equivalence relation on Home(Z,Y) in the usual sense.
In particular, the morphism (s,t) is a monomorphism.

A morphism f: (Y,0y) — (X,0x) of smooth manifolds is étale if there exists
an open covering (V; — Y);er such that each f|v,: (Vi, Oy|v,) = (f(Vi), Ox|fev;))
is a diffeomorphism. It is an open immersion if, in addition, the map f: Y — X is
injective. The image f(Y) C X of an étale morphism is an open subset.

Proposition 10. Given an equivalence relation of smooth manifolds

(s,t)
(R, Or) —— (¥, 0y) x (Y, Oy)
such that Y = [1,c;Yi and R = [1; jyerxs Uiy and such that s and t restrict to
open immersions s|y, ;: Us j — Y and t|y, ,: U; j — Yj, the coequalizer

s f
(R,0OR) — (Y, 0y) —— (X, Ox)

exists. Moreover, the morphism f is étale.

Proof. Let X = Y/R with the quotient topology, and let f: Y — X be the canonical
projection. It is the coequalizer of s,t: R — Y in the category of topological spaces
and continuous maps. We claim that for all ¢ € I, the map f|y,: ¥Y; — f(Y;) is
a homeomorphism. First, it is a bijection, since the maps s|y,,: U;; — Y; and
ty,,: Ui — Y; necessarily are equal. For they are both open immersions and the
diagonal map A:Y; = Y; x Y; factors through (s,t)|u, ,: Us; — Y; x Yj, since (s, )
is an equivalence relation. Second, it is an open map. Indeed, if V' C Y; is an open
subset, then so is the subset

FAV) =Hjer(tos™HVNUiy,) C e ¥ =Y-
This shows that f|y,: ¥; — f(Y;) C X is a homeomorphism.

Finally, the sheaf of rings O x given by the equalizer

1 wst
Ox —— .0y ——3h.0p,
fatt
where h = fos = fot, makes (X,0x) a smooth manifold and makes the diagram
in the statement a coequalizer in the category of smooth manifolds and morphisms
of smooth manifolds. O

Remark 11. The morphisms s,t: (R, Or) — (Y, Oy) in Proposition 10 are étale, but
they are a very particular kind of étale morphisms. We would like the result to hold
more generally for every étale equivalence relation, that is, for every equivalence
relation (s,t): (R,Or) — (Y xY, Oy xy) such that s and ¢ are étale, but this is not
true.® To remedy this, one builds the larger category of “smooth spaces” in which
the result holds for every étale equivalence relation.

5 A counterexample is (s,t): Z x S! — 1 x S!, where s(n, z) = z and t(n, z) = w"z, where w
is some fixed irrational roation of the circle S*.
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Ezample 12. (1) Let Al = (R,03") be the affine line, let A} ~ {0} C A} be the
open complement of {0} C A}, and let (s,t) be the equivalence relation with

R=RiURpURy =AM UAL~ {0)UAL — 2V =Y, UY, = AL UAL
t

where the maps s,t: Rio — Y7 are defined to be the canonical inclusion and the
map t — ¢t~ 1, respectively. The coequalizer (X, Ox) is the projective line IE”,lc.

(2) We consider the equivalence relation defined as in (1), except that we now define
both s,t: R12 — Y7 to be the canonical inclusion. The coequalizer (X, Ox) is an
affine line with a double point at the origin. The space X is not Hausdorff.

We will use Proposition 10 to construct the tangent bundle of a smooth manifold.
It is a functor that to a smooth manifold (X, Ox) assigns a morphism

T(X,0x) = (TX,07rx) —— (X,0x)
of smooth manifolds together with a structure of real vector space on the fiber
T(X,0x), = px' (v) C T(X,0x)

for all z € X, and that to a morphism f: (Y,0y) — (X, Ox) of smooth manifolds
assigns a commutative diagram of morphisms of smooth manifolds

T(Y,0y) —L 5 T(X, 0x)
lpy lpx
f
(Y, 0y) —— (X, Ox)
such that for all y € Y with image = f(y) € X, the induced map of fibers

daf,
T(Y? OY)Z/ L T(X7 oX)w

is linear. The “chain rule” is the statement that this assignment is a functor.

First, if U C R™ is an open subset, then we define
T(U,08") = (U x R™, 0 gn) —— (U, OF")

to the projection on the first factor. We define the structure of real vector space
on the fiber T(U, O3™), by (z,v) + (z,w) = (z,v + w) and (z,v) -a = (z,v - a),
where v,w € R™ and a € R. If f: (V,03") — (U, O3") is a morphism of smooth
manifolds with U C R™ and V' C R™ open, then we define

T(V, 03) — T(U, 0F)
to be the morphism of smooth manifolds defined by
df (y,v) = (f(y), Du f (1)),

where y € V and v € R”, and where
Dy f(y) = limp—0(f(y +vh) — f(y))/h

is the directional derivative. If (eq,...,e) and (e1,...,e,) are the standard bases
for R™ and R™, respectively, and if we write f(y) = Y.~ e; fi(y), then

De, f(y) = >0~ ei - (0fi/0y;)(y).
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It follows that the diagram

(v, 08— (U, 03m)

commutes, and that for all y € V' with image x = f(y) € U, the induced map

df,
T(V,05), ~ 2 T(U, 03),
is linear. Moreover, the chain rule from calculus shows that
d(fog)=df odg
for all composable morphisms of smooth manifolds

(W, 03) —2 (v, 03) —— (U, 0p)

with U C R™, V C R", and W C RP.
Second, given any smooth manifold (X,0x), we let (Y;, h;: Y; — V;);er be a

family of charts with V; C R™:. The canonical map
f
(Y, 0y) =1L, (Y:, Oxly;) — (X, Ox)

is étale, the canonical inclusion

(s,t)
(R,0Rr) = (Y,0y) xX(x,0x) (Y,0y) —— (Y, Oy) x (Y,0y)

is an equivalence relation, and the diagram
5 !
(R,0R) — (Y, 0y) — (X, 0x)

is a coequalizer. We have Y = [[,.; Y; and R = H(i,j)x[x[ U;; with U; ; =Y;NYj,
so the existence of the coequalizer also is a consequence of Proposition 10. We now
define px: T(X,0x) — (X,0x) to be the induced morphism of coequalizers

ds
T(R, Or) ——3 (Y. 0y) —2— T(X, 0x)

dt

S f
(R,Or) 4t§ (Y, 0y) —— (X, 0x),

and we give the fiber T'(X, Ox ), the unique structure of real vector space such that

for any y € Y with f(y) = z, the induced map of fibers

T(Y,0v), —5 T(X, 0x)a

is a linear isomorphism. To see that px : T(X,0x) — (X, Ox) is well-defined, up to
canonical isomorphism, one has to prove two things. First, one much show that the
equivalence relation (ds, dt) satisfies the hypothesis of Proposition 10, which is not
difficult. Second, if p'y: T(X,0x)" — (X, Ox) is obtained as above but beginning
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with a different choice of family of charts (Y/,h;: Y/ — V/)ier, then one must

10 '%

produce a canonical diffeomorphism g making the diagram

T(X,0x) —2=T(X,0x)

| |

(X,0x) =———=(X,0x)

commute. This is more delicate, since we have not characterized the tangent bundle
by some universal property, and therefore, there is not a unique choice of “canonical”
diffeomorphism.® We will not go further into this here.

Definition 13. A tangent vector field on a smooth manifold (X, Ox) is a morphism

of smooth manifolds v: (X,0x) — T(X,0x) such that px o v = idx.

We note that the value of the map v at € X is a vector v(z) € T(X,0x), in
a vector space that varies with x. We give the set Vect(X, Ox) of tangent vector
fields on (X, Ox) the structure of a left T'(X, O x )-module, where

(v +w)(z) =v(z) + w(z)
(v v)(z) = ¢(z) - v(x)
for v, w € Vect(X,0x) and ¢ € T'(X,0x).

Let (X, Ox) be a smooth manifold, and let v € Vect(X, Ox) be a tangent vector
field. The directional derivative along v is a k-linear map of sheaves

Ox —25 Oy,
which we now define. We must define, for all U C X open, a k-linear map
D,
I(U,0x) —=T(U,0x)
such that for all U C V C X open, the diagram

L'(V,0x) v, I(V,0x)
lResg lResg
I(U, 0x) —225 (U, 0)

commutes. We first note that the smooth tangent vector field v on (X, Ox) restricts
to a smooth tangent vector field v|y on (U,Ox|y) for all U C X open. Indeed, if
j: U — X is the open immersion of U in X, then the diagram

T(U, 0x|) —2 T(X, 0x)
(U, 0x|v) —2— (X, 0x)

is cartesian, and therefore, we may define v|y: (U, Ox|v) — T(U, Ox|u) to be the
unique morphism such that djov|y = voj and py ov|y = idy. Next, we may view

6 Tt would of course be much better to give a global definition of the tangent bundle similar
to the definition px : T'(X,0x) = Spec(Symg , (Qk/k)) — (X, 0x) in algebraic geometry.
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¢ € I'(U,0x) as a morphism of smooth manifolds ¢: (U, Ox|y) = (R, OF"), so we
have the commutative diagram

d
T(U,Ox|y) —— T(R, Og)
J{PU lpm
U—% 4R

We also have a tangent vector field w on (R, OF") defined by w(t) = (¢,e1), and
we now define Dy, (@) € T'(U, Ox|v) to be the unique element such that

dpov|ly =w - Dy u(p).

It is clear from the definition that the map D, ;7 is k-linear and that if U C V C X
are open subsets, then D, iy o Resg = Resg 0 Dy v. Therefore, we have defined a
k-linear map of sheaves D, : Ox — Ox as desired.

In general, given a morphism f: (X,0x) — (S,0g) of locally ringed spaces and
a right O x-module F, an f*Og-linear morphism of sheaves
Ox —2—7F
is an f*Og-linear derivation if for all U C X open and ¢, € T'(U, Ox),

dulp- ) =0u(p) -+ du(¥)oe.

We write Derg, (Ox,JF) for the set of f*Og-linear derivations §: Ox — F. It has a
structure of abelian group given by the pointwise sum of derivations. Moreover, if
h: F — Fis an O x-linear morphism and if §: Ox — Fis an f*Og-linear derivation,
then hod: Ox — F again is an f*Og-linear derivation. So (h,d) — h o defines a
structure of left Ende, (F)-module on the abelian group Derp, (Ox, F).

Lemma 14. If (X,0x) is a smooth manifold, then for all v € Vect(X,0x), the

directional derivative Dy, : Ox — Ox s a k-linear derivation.

Proof. Given v € Vect(X,0x), an open subset U C X, and a point « € U, we
give a formula for D, y(p)(x) for ¢ € T'(U,Ox|v). There exists a smooth curve
v: (I,05™) = (U,0x|v) defined on an open interval 0 € I C R such that y(0) =z
and such that, in the diagram

T(1,09) —2 T(U, Ox|r) — T(R, Og)
lpr qu lpk
(1,0;) —— (U, 0x|v) —— (R, O3"),
we have (dy o w|r)(0) = v|y(x) = (v|y ©¥)(0). Therefore,

(dp o v|y)(x) = (dp o |y 07)(0) = (dp o dy o wl[r)(0) = (d( 0 7) o w|1)(0),

from which we obtain the formula

Dy.u(p)(x) = (#07)(0).
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Hence, for all p,9 € T'(U,Ox), we have
Dyu(p-¢)(x) = ((¢-¥) o) (0) = ((pory) - (o)) (0)
= (¢ 079)(0) - (¥ 0)(0) + (¥ 07)"(0) - (p 07)(0)
= Dy u(p)(x) - () + Dy u(¥)(x) - (),

and since x € U was arbitrary, we conclude that

Dyu(p- 1) = Dou(p) ¢+ Dou(¥) - ¢

as desired. O]

We now obtain the promised global description of the left T'(X, O x)-module of
tangent vector fields.

Proposition 15. Let (X,0x). The directional derivative

D
Vect(X,0x) — Deri(0x,0x)

is an isomorphism of left I'(X, O x)-modules.
Proof. For all open subsets U C V C X, we have a commutative diagram

D
Vect(V,Ox|v) — Der(Ox|v,0x|v)

lResE J’Resg

D
Vect(U, Ox |v) —— Der(Ox|v, Ox|v),

so the family (Dy)ycx is a morphism of presheaves of left O x-modules

Vect(X,0x) —— Derr(Ox, Ox).

Both of these presheaves are in fact sheaves, because they are defined in terms of
by local conditions. We will prove that this morphism of sheaves is an isomorphim.
Since the map in the statement is obtained from this morphism of sheaves by
applying the global sections functor I'( X, —), this will prove the proposition.

Since the statement that the map of sheaves in question is an isomorphism is
local on X, we may assume that (X, Ox) is equal to (U, Of") with U C R™ open.
We may further assume that U C R™ is convex, since every open subset of R"
admits a covering by convex open subsets. So it suffices to prove that for U C R"”
convex open, the directional derivative

D
Vect(U, O3*) —— Der, (03", OF")

is an isomorphism of left I'(U, 03" )-modules. The left-hand I'(U, OF")-module is
free of rank n, and a basis is given by the family (wq,...,w,) of vector fields
defined by w;(z) = (z,e;), where (ey,...,e,) is the standard basis of R". By the
definition of the directional derivative, we have

Dwi (90) = 890/8372'7
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so we must prove that the family (9/9x1,...,0/0x,) of derivations is a basis of the
left T'(U, O3 )-module Der (07", O5). It is linearly independent, since

1 ifi=

0 ifi#7,

and to show that it also generates the left I'(U, Of")-module Dery (05", OF"), we
prove that for all 6 € Der,(OF", OF"), the following identity holds,

0 =311 0(x) - 0/O;.
It suffices to show that for all § € Dery (03", O5), ¢ € T'(U, 05"), and a € U,
3(p)(a) = 221, 6(xi)(a) - (9w /0z;)(a).

Indeed, the sheaf F = OF" has the special property that a section ¢ € I'(U, OF") is
zero if and only if all its values ¥(a) € F(a) = F, ®oz= k(a) are zero. Now, since
we assumed that the open subset U C R" is convex, Cofollary 21 below shows that
there exist unique ¢; ; € I'(U, OF") such that

p(z) = pla) + 32 (@i — a:)(0p/0wi)(a) + 327 5 (zi — ai)(x; — a;)i (),

and since 9 is a k-linear derivation, the desired identity ensues. O

8331'/8.13]' = {

Ezample 16. If (X, Ox) is a smooth manifold, and and if h: U — V is a chart with
V' C R"™ open, then the family of derivations (41, ...,d,), where
3i()(z) = (9(p o h™1) 0z:) (h(2)),

is a basis of the left T'(U, Ox)-module Der(Ox|vr, Ox|v). Hence, there is a unique
basis (v1,...,v,) of the left T'(U, O x)-module Vect(U, Ox|y) such that D, = §;.

According to Proposition 15, tangent vector fields may analogously be defined
to be k-linear derivations 6: Ox — Ox. This definition has the advantage of being
truly global. We define the “Lie bracket”

Dery(Ox, Ox) 5 Der(Ox, Ox ) ——— Dery (Ox, Ox)

to be the map that to J; ® o assigns the k-linear morphism
[51,52] = 51 9] (52 — 52 9] (51.
To verify that [d1,02] € Derg(Ox,0x), we let ¢, € T'(U, Ox|y) and calculate

[61,02] (¢ - ¥) = 61(02(p - 1)) — 62(d1 (- ¥))
= 01(02() - b + ¢ - 02(¢)) = 52(61(¢p) - ¥ + - 61(¥))
= 01(02(0)) - ¥ + 02(p) - 01(¥) + 01(p) - 02(¥) + - 61(d2(1)))
—82(01(9)) ¥ — 1(p) - 62(¥) — b2(p) - 61(¥) — ¢ - 62(31(¥))
= [61,02)(p) - ¥ + - [01,02] ().
It is clear that the map [—,—] is k-linear in both arguments so that we obtain

the stated map. A similar and equally straightforward calculation shows that given
three k-linear derivations 1, d2, and d3, the “Jacobi identity”

[[01, 2], 03] + [[02, 03], 61] + [[03,01],02] =0
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holds. This makes Dery(Ox,Ox) a Lie algebra over k.”

We proved earlier that the category of smooth manifolds and morphisms of
smooth manifolds has finite products. It does not have all fiber products, but the
implicit function theorem shows that it does have some fiber products. Given a
cartesian square of smooth manifolds and morphism of smooth manifolds

/

(Y’, Oy/) L> (Y, Oy)

I
(X', 0x) —2— (X, 0x),

we say that f’ is the base-change of f along g. If such a square exists for given f
and g, then we say that the base-change of f along g exists.

A morphism of smooth manifolds f: (Y, 0y) — (X, Ox) is a submersion® (resp. an
immersion) if for all y € Y with image 2 = f(y) € X, the differential

df?/
T(Y7 OY)ZJ BE— T(Xa OX).’/C
is surjective (resp. injective). We note that, in this case, it follows from linear algebra
that dim(y) > dim(x) (resp. dim(y) < dim(x)).

Theorem 17 (Implicit function theorem). In the category of smooth manifolds
and morphisms of smooth manifolds, the base-change of a submersion along any
morphism exists and is a submersion.

Proof. This is based on the inverse function theorem. It states that a morphism of
smooth manifolds, which is both an immersion and a submersion, is étale. The proof
has a number of steps. First, if (Y,0y) = (X X Z,0xxz) and f is the projection
on the first factor, then the base-change along any g exists with Y’ = X’ x Z, with
f’ the projection on the first factor, and with ¢’ = ¢g x idz. Second, the inverse
function theorem shows if f is any submersion, then for all y € Y, we find open
neighborhoods y € V.C Y,z = f(y) € U C X, and 0 € W C R? together with a
diffeomorphism h making the diagram

(V, Oy |v) —— (U x W, Oxxw |vxw)

lm lp
(U, 0x|v) === (U, 0x]v),

where p is the canonical projection, commute. Hence, it follows from the first step
that the base-change of f|y along any morphism g exists and is a submersion.
Finally, we use Proposition 10 to glue together the local solutions obtained in the
second step to a global solution. To do so, we also use the fact that the base-change
of an open immersion along any morphism exists and is an open immersion and the
fact that base-change along an open immersion preserves both coequivalizers and
submersions. d

7 This Lie algebra is infinite dimensional, unless X is finite. We will define the Lie algebra of
a Lie group to be a subalgebra of this Lie algebra.

81n algebraic geometry, the analogue of submersions are called smooth morphisms. It is for
this reason, that I say “morphism of smooth manifolds” instead of “smooth map.”
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Remark 18. Let f: (Y,0y) — (X,0x) be a morphism of smooth manifolds. We
say that y € Y is a regular point of f if df, is surjective and that z € X is a
regular value of f if every y € Y with f(y) = « is a regular point. Therefore, given
a morphism ¢: (X’,0x/) — (X,0x) for which there exists g(X') C U C X open
such that every = € U is a regular point of f, then the base-change of f along g
exists and is equal to the base-change of f|s-1 ;) along g.

Ezample 19. Let Y = M, (R), and let X C M, (R) be the subset of symmetric
matrices. So Y and X are both real vector spaces of dimension n? and (n + 1)n/2,
respectively, which we view as smooth manifolds of the same dimensions. The map
f(Y,03) — (X, 0%) defined by f(A) = A*A is smooth, and we claim that

sm df sm
T(Y, OY )A *A> T(X» OX )f(A)

is surjective for all A € Y with f(A) = E € X. To see this, use the identity maps
of Y and X as charts and calculate

dfa(B) = limp_o(f(A+ hB) — f(A))/h
= limp0((A+ hB)*(A+ hB) — A*A)/h
= limy, ,o(A*A+hA*B+hB*A+ h?B*B — A*A)/h
= A*"B + B*A.
Now, if f(A) = A*A = E, then given C' = C* € X, we set B = %AC and calculate
dfa(B) =A*B+ B*A = %A*AC + %C*A*A = %(C +C*=C.
So the implicit function theorem shows that the base-change

’

(O(n)a OO(n)) L} (Y> o%’m)

T

({E}, 0gpy) —— (X, 0%

exists; see Remark 18. Hence, the subspace O(n) C M, (R) of orthogonal matrices
has a structure of smooth manifold of dimension n? — (n + 1)n/2 = n(n — 1)/2.

APPENDIX: HADAMARD’S LEMMA
We have used the following result, commonly referred to as Hadamard’s lemma.

Lemma 20. Let U C R" be an open subset that is star-convexr with respect to
a € U, and let p: U — R is a smooth function. Then there exists unique smooth
functions p;: U — R such that for all x € U,

p(z) = pla) + i, (@i — ai)ei().

Moreover, for all 1 < i <n, p;(a) = (0p/0z;)(a).
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Proof. We define h: [0,1] — R by h(t) = ¢(a + (z — a)t), which is possible by the
assumption that U’ be star-convex with respect to a, and calculate that

p(z) = p(a) = h(1 ) — h(0) = [, (dh/dt)(t)dt
= Jo Xiss 8<p/8x )(a+ (z — a)t)(z; — a;)dt
=i 1(%‘ — a;) [y (9p/dz)(a+ (x — a)t)dt
So the lemma holds with ¢;(z fo (00/0z:)(a + (z — a)t)dt. O

Corollary 21. Let U C R™ be an open subset that is star-conver with respect to
a € U, and let p: U — R is a smooth function. Then there exists unique smooth
functions ¢; j: U — R such that for all x € U,

p(x) = pla) + 30 (zi — ai)(0p/0zi) (a) + 227y (2 — ai) (x5 — aj)pi ().

Proof. We first write ¢(x) as in the statement of Lemma 20 and the apply the
lemma again to write each of the functions ¢;: U — R as

pi(x) = wi(a) + 325 (zj — a;) i (x) = (0p/0xi)(a) + 37 (2 — a;)pi ()

with ¢; j: U — R smooth. O



