
LIE GROUPS

Definition 1. A Lie group is a group object G = ((G,OG), µ, ι) in the category
of smooth manifolds and morphisms of smooth manifolds.1 A morphism of Lie
groups is a homomorphism of group objects in the category of smooth manifolds
and morphisms of smooth manifolds.

One defines complex Lie groups similarly to be a group objects in the category
of complex manifolds and morphism of complex manifolds.

There is a “forgetful” functor from the category of Lie groups and morphisms of
Lie groups to that of topological groups and continuous group homomorphisms that
to ((G,OG), µ, ι) assigns (G,µ, ι). One can prove that this functor is fully faithful,2

so in particular, the sheaf OG is uniquely determined, up to unique isomorphism,
by the remaining data. Hence, we may view “being a Lie group” as a property of a
topological group.

Example 2. By using the implicit function theorem, we see that the classical groups
all are (real) Lie groups. The groups GLn(C) and SLn(C) are examples of complex
Lie groups.

If ((G,OG), µ, ι) is a Lie group, then we may consider the tangent space

g = T (G,OG)e

of the smooth manifold (G,OG) at the identity element e ∈ G. It is a real vector
space of dimension n = dim(e). We proceed to show that the group structure
morphisms µ and ι give rise to a structure of Lie algebra [−,−] on this real vector
space. Let us first define Lie algebras.

Definition 3. Let k be a field. A Lie algebra over k is a pair g = (g, [−,−]) of a
right k-vector space g and a k-linear map [−,−] : g⊗ g→ g such that:

(LA1) For all x ∈ g, [x, x] = 0.
(LA2) For all x, y, z ∈ g, [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

A morphism of Lie algebras f : (h, [−,−])→ (g, [−,−]) is a k-linear map f : h→ g
such that for all x, y ∈ h, f([x, y]) = [f(x), f(y)].

We call [−,−] the “Lie bracket” and we refer to (LA1) and (LA2) by saying
that the Lie bracket is alternating and satisfies the Jacobi identity, respectively. It
follows that the Lie bracket is antisymmetric in that for all x, y ∈ g, [x, y] = −[y, x].
We warn the reader that the Lie bracket is neither associative nor does it have an
identity element, except in trivial cases. A Lie algebra a is defined to be abelian if
[x, x] = 0 for all x ∈ a.

1 If (G,µ, ι) is a topological group and if {e} ⊂ G is closed, then the space G is automatically

Hausdorff. For the diagonal ∆(G) ⊂ G×G is the preimage by the continuous map µ ◦ (id×ι) of
the closed subset {e} ⊂ G and hence closed.

2See [2, Theorem 9.2.16].
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Example 4. (1) An associative k-algebra A determines a Lie algebra with the same
underlying k-vector space as A and with Lie bracket [a, b] = a ·b−b ·a. In particular,
if V is a right k-vector space, then Endk(V ) is an associative k-algebra under
composition of k-linear maps. The associated Lie algebra is denoted gl(V ).

(2) If (X,OX) is a smooth manifold, then the real vector space Derk(OX ,OX) has
a structure of real Lie algebra with Lie bracket [−,−] defined by3

[δ1, δ2] = δ1 ◦ δ2 − δ2 ◦ δ1.
Hence, there is a unique structure of Lie algebra on Vect(X,OX) for which the
directional derivative is an isomorphism of Lie algebras.

In particular, a morphism of Lie groups π : G→ GL(V ) gives rise to a morphism
of Lie algebras dπe : g → gl(V ). So a representation of a Lie group determines a
representation of its Lie algebra. This assignment is a functor, and we will prove
that its restriction to the full subcategory of connected Lie groups is faithful.

Let G = ((G,OG), µ, ι) be a Lie group. Given g ∈ G, we write

(G,OG) (G,OG)
Lg

//

for the morphism of smooth manifolds defined by Lg(x) = µ(g, x) = gx and call it
“left multiplication by g ∈ G.” The map Lg is not a group homomorphism, but it
is an automorphism of smooth manifolds, so we get a map

G
L // Aut(G,OG)

from G to the group of automorphism of the smooth manifold (G,OG), and this
map is a group homomorphism. We wish to consider the induced actions on the
“space” of tangent vector fields. We first prove a general result.

Proposition 5. Let f : (Y,OY ) → (X,OX) be a morphism of smooth manifolds,
and let Du ∈ Derk(OX ,OX) and Dv ∈ Derk(OY ,OY ) be the directional derivatives
along two tangent vector fields u ∈ Vect(X,OX) and v ∈ Vect(Y,OY ), respectively.
The following statements are equivalent.

(a) The diagram of smooth manifolds and morphisms of smooth manifolds

T (Y,OY ) T (X,OX)

(Y,OY ) (X,OX)

df
//

v

OO

u

OO

f
//

commutes.
(b) The diagram of sheaves of OX-modules and k-linear maps

OX f∗OY

OX f∗OY

f]

//

Du

��

f∗Dv

��f]

//

commutes.

3 If δ1, δ2 : OX → OX are k-linear derivations, then δ1 ◦δ2 : OX → OX is typically not a k-linear

derivation. So (2) is not a special case of (1).
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Proof. We first assume (a) and prove (b). We must show that for all U ⊂ X open
with V = f−1(U) ⊂ Y and for all ϕ ∈ Γ(V,OY ), the identity

Dv(ϕ ◦ f |V ) = f |V ◦Du(ϕ)

holds. But this follows from the chain rule. Indeed, we consider the diagram

T (V,OY |V ) T (U,OX |U ) T (R,Osm
R )

(V,OY |V ) (U,OX |U ) (R,Osm
R )

df |V
//

dϕ
//

v|V

OO

u|U

OO

w

OO

f |V
//

ϕ
//

where w is the constant vector field defined by w(t) = (t, e1). We have

Dv(ϕ ◦ f |V ) · (w ◦ ϕ ◦ f |V ) = d(ϕ ◦ f |V ) ◦ v|V = dϕ ◦ d(f |V ) ◦ v|V
= dϕ ◦ u|U ◦ f |V = (Du(ϕ) ◦ f |V ) · (w ◦ ϕ ◦ f |V )

where the first and last identity hold by the definition of Du and Dv, the second
identity holds by the chain rule, and the third identity holds by (a).

We next assume (b) and prove (a). Since pX is a submersion, the implicit function
theorem shows that the base-change of pX along f exists,

T (X,OX)′
f ′
//

p′X
��

T (X,OX)

pX

��

(Y,OY )
f
// (X,OX).

We repeat the definition of the directional derivative to define a map

Vect(X,OX)′
D′
// Derk(OX , f∗OY )

from the set of morphism of smooth manifolds s : (Y,OY ) → T (X,OX)′ such that
p′X ◦ s = idY to the set of k-linear derivations δ : OX → f∗OY . Given U ⊂ X open
with V = f−1(U) ⊂ Y and ϕ ∈ Γ(U,OX), we consider the diagram

T (U,OX |U )′
(f |V )′

//

p′U
��

T (U,OX |U )

pU

��

dϕ
// T (R,Osm

R )

p R

��

(V,OY |V )
f |V

// (U,OX |U )
ϕ
// (R,Osm

R )

and define D′s(ϕ) ∈ Γ(U, f∗OY ) to be the unique element such that

D′s(ϕ) · (w ◦ ϕ ◦ f |V ) = dϕ ◦ (f |V )′ ◦ s|V .
Now, the two composites u ◦ f and df ◦ v of the morphisms in the top diagram in
the statement are both elements of Vect(X,OX)′, and we have

D′u◦f = f ] ◦Du = f∗Dv ◦ f ] = D′df◦v.

Indeed, the first and last identity follow immediately from the definitions of D and
D′, and the middle identity is (b). Hence, it will suffice to prove that the map D′

is injective.4 To this end, we proceed as in the proof of Proposition 15 last time.

4The map D′ need not be surjective, because the sheaf f∗OY can be very complicated.
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We first observe that the map in question is equal to the map of global sections
induced by a map of sheaves of OY -modules

Vect(X,OX)′
D′ // Derk(OX , f∗OY ).

Hence, we may assume that (X,OX) is equal to (U,Osm
U ) with U ⊂ Rm an open

subset. In this case, the Γ(Y,OY )-module Vect(X,OX)′ is free of rank m, and a
basis is given by the family (s1, . . . , sm) with si = wi ◦ f , where wi(x) = (x, ei)
and where (e1, . . . , em) is the standard basis of Rm. Moreover, we have

D′si
= D′wi◦f = f ] ◦Dwi

= f ] ◦ (∂/∂xi),

and since f ] : OX → f∗OY is a ring homomorphism, we find that

D′sj
(xi) = f ] ◦ (∂xi/∂xj) =

{
1 if i = j

0 if i 6= j.

This shows that the family (f ] ◦ (∂/∂x1), . . . , f ] ◦ (∂/∂xm) is linear independent,
which, in turn, shows that D′ is injective as desired. �

Now, if (X,OX) is a smooth manifold, then we obtain a group homomorphism

Aut(X,OX)
τ // Autk(Vect(X,OX))

defined by τ(f)(v) = u, where u,v ∈ Vect(X,OX) are related as in the statement of
Proposition 5. We note that the map τ(f) is not a Γ(X,OX)-linear automorphism,
but, instead, it is a Γ(X,OX)-linear isomorphism

Vect(X,OX)
τ(f)
// f ]∗Vect(X,OX)

from Vect(X,OX) to the left Γ(X,OX) obtained from Vect(X,OX) by extension of
scalars along f ] : Γ(X,OX)→ Γ(X,OX). We will not explore this further here and
will simply consider τ(f) as a k-linear automorphism of Vect(X,OX). However, it
is clear from Proposition 5 that for all v1,v2 ∈ Vect(X,OX),

[τ(f)(v1), τ(f)(v2)] = τ(f)([v1,v2]),

so we may view τ as a group homomorphism

Aut(X,OX)
τ // Autk(Vect(X,OX), [−,−])

to the group of automorphisms of the real Lie algebra of tangent vector fields on
the smooth manifold (X,OX).

We return to the case of a Lie group G. We define “left translation of tangent
vector fields” to be the composite group homomorphism

G
L
// Aut(G,OG)

τ // Autk(Vect(G,OG), [−,−]),

and we define a “left-invariant tangent vector field” to be a tangent vector field v
that is fixed under left translation by every g ∈ G.
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Definition 6. The Lie algebra of a Lie group G is the sub-Lie algebra

(Lie(G), [−,−]) = (Vect(G,OG), [−,−])G

of left-invariant tangent vector fields.5

We also write g instead of Lie(G). We now show that the k-vector space Lie(G)
is finite dimensional, and that the assignment of Lie(G) to G extends to a functor
from the category of Lie groups and morphisms of Lie groups to the category of Lie
algebras and morphisms of Lie algebras.6

Proposition 7. If G is a Lie group, then the map εG : g → T (G,OG)e defined by
εG(v) = v(e) is a k-linear isomorphism. Moreover, if f : H → G is a morphism of
Lie groups, then the unique k-linear map Lie(f) that makes the diagram

Lie(H) Lie(G)

T (H,OH)e T (G,OG)e

Lie(f)
//

εH

��

εG

��
dfe //

commute is a morphism of Lie algebras.

Proof. A tangent vector field u ∈ Vect(G,OG) is left-invariant if for all g ∈ G,

u(g) = dLg,e(u(e)),

so the first part of the statement is clear. To prove the second part of the statement,
we note that if v ∈ Vect(H,OH), then u = Lie(f)(v) ∈ Vect(G,OG) is characterized
as the unique left-invariant vector field such that u ◦ f = df ◦ v. Equivalently, by
Proposition 5, the directional derivative Du ∈ Derk(OG,OG) is characterized in
terms of Dv ∈ Derk(OH ,OH) by the properties that (1) the diagram

OG
f]

//

Du

��

f∗OH

f∗Dv

��

OG
f]

// f∗OH

commutes, and (2) for all g ∈ G, the diagram

OG
L]

g
//

Du

��

Lg∗OG

Lg∗Du

��

OG
L]

g
// Lg∗OG

5We could of course just as well have chosen to use right-invariant tangent vector fields, but

note that, in general, being left-invariant and being right-invariant are different properties.
6The assignment of Vect(G,OG) to G does not extend to a functor between these categories.



6 LIE GROUPS

commutes. More generally, if s ∈ Endk(OG) and t ∈ Endk(OH) are any k-linear
morphisms, then we may ask that (1) the diagram

OG
f]

//

s

��

f∗OH

f∗t

��

OG
f]

// f∗OH

commutes, and (2) for all g ∈ G, the diagram

OG
L]

g
//

s

��

Lg∗OG

Lg∗s

��

OG
L]

g
// Lg∗OG

commutes. Let us write s ∼ t if this is the case. We now let vi ∈ Lie(H), and
let ui = Lie(f)(vi) ∈ Lie(G) so that Dui

∼ Dvi
. Then the composite k-linear

morphisms Du1◦Du2 , Du2◦Du1 ∈ Endk(OH) and Dv1◦Dv2 , Dv2◦Dv1 ∈ Endk(OG)
also satisfy that Du1 ◦Du2 ∼ Dv1 ◦Dv2 and Du2 ◦Du1 ∼ Dv2 ◦Dv1 . But then

[Du1 , Du2 ] = Du1 ◦Du2 −Du2 ◦Du1 ∼ Dv1 ◦Dv2 −Dv2 ◦Dv1 = [Dv1 , Dv2 ],

which shows that

[u1,u2] = Lie(f)([v1,v2]),

as desired. �

Remark 8. Let G be a Lie group, and let us identify g = T (G,OG)e. The Lie bracket
on g may also be defined as follows. The group structure on (G,OG) induces a group
structure on T (G,OG), and the maps

g T (G,OG) G
i //

p
//

0

ff

where i = ie is the kernel of p = pG and where 0 = 0G is the zero section, all are
morphisms of Lie groups.7 Moreover, they exhibit the Lie group T (G,OG) as the
semidirect product of the Lie group G and the k-vector space g considered as a Lie
group under addition. This determines a morphism of Lie groups

G Autk(g)
Ad

//

called the adjoint representation. The induced map of tangent spaces at the identity
element e ∈ G is a k-linear map

g Endk(g)
ad
//

the adjunct of which is a k-linear map

g⊗ g g.
[−,−]

//

7The fact that i is a group homomorphism was the subject of the problem set for week 14.
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To see that it satisfies the Jacobi identity, we argue as follows. If f : H → G is a
morphism of Lie groups, then the map Lie(f) = dfe : h→ g satisfies

Lie(f)([x, y]) = [Lie(f)(x),Lie(f)(y)]

for all x, y ∈ g. Moreover, if G = GL(V ), then bracket [−,−] defined here is equal
to the one defined in Example 4. In particular, for ad = Lie(Ad), we find that

ad([x, y]) = [ad(x), ad(y)] = ad(x) ◦ ad(y)− ad(y) ◦ ad(x)

for all x, y ∈ g, which is equivalent to the Jacobi identity.

We next compare the representation theory of a Lie group G to that of its Lie
algebra g. We will restrict our attention to representations (V, π), where V is a
finite dimensional complex vector spaces, and where

G
π // GL(V )

is a morphism of Lie groups. If we apply the Lie algebra functor to this morphism,
then we obtain a morphism of Lie algebras

g gl(V ).
Lie(π)

//

Hence, a representation π of a Lie group G on a finite dimensional complex vector
space V gives rise to the representation Lie(π) of the Lie algebra g on the same
vector space V . In particular, if Lie(π) is irreducible, then π is necessarily also ir-
reducible. We will now use the existence and uniqueness theorem for solutions to
ordinary differential equations to show that if G is connected, then the representa-
tion π is completely determined by the representation Lie(π).

A global flow on a smooth manifold (X,OX) is defined to be a left action

(R,Osm
R )× (X,OX)

φ
// (X,OX)

in the category of smooth manifolds and morphisms of smooth manifolds, of the
group object R = ((R,Osm

R ),+,−) on the object (X,OX). There is a unique tangent
vector field v ∈ Vect(X,OX) that makes the diagram

T (R×X,OR×X)
dφ
// T (X,OX)

(R×X,OR×X)
φ
//

w×0

OO

(X,OX)

v

OO

commute. Indeed, let i : X → R×X be the inclusion defined by i(x) = (0, x). Since
φ ◦ i = idX , we are forced to define v to be the composite morphism

v = v ◦ φ ◦ i = dφ ◦ (w × 0) ◦ i,

and with this definition, we have

v ◦ φ = dφ ◦ (w × 0) ◦ i ◦ φ = dφ ◦ (w ◦ 0),

where the second non-trivial identity holds, because φ is an action. We say that v
is the infinitesimal generator of the flow φ.

Conversely, given v ∈ Vect(X,OX), the existence and uniqueness theorem for
solutions to ordinary differential equations shows that there exists a morphism of
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smooth manifolds φ : (U,OR×X |U ) → (X,OX) with {0} × X ⊂ U ⊂ R × X open
which makes the diagram

T (U,OR×X |U )
dφ
// T (X,OX)

(U,OR×X |U )
φ
//

(w×0)|U

OO

(X,OX)

v

OO

commute and satisfies φ(0, x) = x and φ(s, φ(t, x)) = φ(s+t, x) whenever this makes
sense. We say that φ is a local flow with infinitesimal generator v. In particular,
if there exists a global flow φ with infinitesimal generator v, then φ is uniquely
determined by v. If this is the case, then we say that v is complete.

If G is a Lie group, and if v ∈ g is a left-invariant vector field, then, by using
the group structure, one shows that every local flow with infinitesimal generator v
extends uniquely to a global flow φ = φv with infinitesimal generator v. We define
the exponential map of the Lie group G to be the map

g
exp
// G

given by exp(v) = φv(1, e). We remark that exp is not a group homomorphism,
unless the Lie algebra g is abelian.

Theorem 9. Let G be a Lie group with Lie algebra g. The exponential map is a
morphism of smooth manifolds

(g,Osm
g )

exp
// (G,OG).

Moreover, it is étale at 0 ∈ g.8

Proof. The structure of group object on the smooth manifold (G,OG) gives rise to
a structure of group object on T (G,OG). Moreover, there is a left-invariant tangent
vector field u on the Lie group T (G,OG) such that for every left-invariant tangent
vector field v on (G,OG), the diagram

T (G,OG)
dv // T (T (G,OG))

(G,OG)
v //

v

OO

T (G,OG)

u

OO

commutes. Now, there is a global flow ϕu on T (G,OG) with infinitesimal generator
u, and it follows from the uniqueness of solutions to ordinary differential equations
that for every v ∈ Vect(G,OG) with global flow ϕv on (G,OG), the diagram

(R,Osm
R )× (G,OG)

ϕv //

id×v
��

(G,OG)

v

��

(R,Osm
R )× T (G,OG)

ϕu // T (G,OG)

8The exponential map may have critical points. One can show that x ∈ g is a critical point for

exp if and only if some 0 6= λ ∈ 2πiZ ⊂ C is an eigenvalue of ad(x) ∈ Endk(g).
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commutes. Therefore, the exponential map is equal to the composite map

(g,Osm
g ) (R,Osm

R )× T (G,OG) T (G,OG) (G,OG)
i1×ie // ϕu //

pG //

and since each of these three maps is a morphism of smooth manifolds, so is the
exponential map. Finally, it follows immediately from the definition that

g = T (g,Og)0 T (G,OG)e
d exp0 //

is equal to the isomorphism εG in Proposition 7, and therefore, the inverse function
theorem shows that exp is étale at 0 ∈ g as stated. �

Corollary 10. If G is a connected Lie group, then every g ∈ G can be written as
a product g = exp(x1) · · · exp(xn) with n ≥ 0 and x1, . . . , xn ∈ g.

Proof. By Theorem 9, there exists open subsets 0 ∈ U ⊂ g and e ∈ V ⊂ G such
that exp |U : (U,Osm

U ) → (V,OG|V ) is a diffeomorphism. Hence, it suffices to show
that the subgroup H ⊂ G generated by V is equal to G.9 Since V ⊂ G is open, so
is H ⊂ G. But then gH ⊂ G is open, for all g ∈ G, which implies that

H = Gr (
⋃
g∈GrH gH) ⊂ G

is closed. Since G is connected, we conclude that H = G as desired. �

Corollary 11. Let G and H be Lie groups. If H is connected, then the map

Hom(H,G)
Lie
// Hom(h, g)

is injective.

Proof. Let f : H → G be a morphism of Lie groups. The diagram

h H

g G

expH //

Lie(f)

��

f

��expG //

commutes, by naturality of the exponential map. By Corollary 10, every element
of H is a product of elements of expH(h) ⊂ H. Since f is a group homomorphism,
this implies that it is uniquely determined by the map Lie(f). �

We use the last corollary to show that if π1 and π2 are two finite dimensional
real or complex representations of a connected Lie group G, then π1 ' π2 if and
only if Lie(π1) ' Lie(π2). In effect, we prove the following more precise result.

Corollary 12. Let π1 : G→ GL(V1) and π2 : G→ GL(V2) be representations of a
connected Lie group on finite dimensional real or complex vector spaces. A linear
isomorphism f : V1 → V2 intertwines between π1 and π2 if and only if it intertwines
between Lie(π1) and Lie(π2).

9Here we also use that exp(x)−1 = exp(−x), since [x,−x] = −[x, x] = 0.
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Proof. That f intertwines between π1 and π2 means that the diagram of Lie groups

G

GL(V1)

GL(V2)

π1 11

π2 --

cf

��

where cf (h) = f ◦ h ◦ f−1, commutes. But then the diagram of Lie algebras

g

gl(V1)

gl(V2)

Lie(π1) 11

Lie(π2)
--

Lie(cf )

��

commutes, and since Lie(cf )(h) = f ◦h◦f−1, this shows that f intertwines between
Lie(π1) and Lie(π2). This part of the statement only uses that Lie(−) is a functor
and not that G is connected. Conversely, if f intertwines between Lie(π1) and
Lie(π2), then the bottom diagram commutes, and since G is connected, this implies,
by Corollary 11 that the top diagram commutes. �

This is marvelous! To a large extent, we have replaced the differential geometric
problem of finding representations of a Lie group with the linear algebraic problem
of finding representations of its Lie algebra. We illustrate this for G = SU(2), which
is a compact connected Lie group. We have already proved that for every integer
n ≥ 0, the representation πn given by the nth symmetric power

πn = Symn
C(π)

of the standard representation π of SU(2) on V = C2 is an irreducible representation
of dimension n+ 1. The associated representation of the Lie algebra g = su(2) is a
morphism of real Lie algebras

su(2) f∗gl(Symn
C(V ))

Lie(πn)
//

from the real Lie algebra su(2) to the real Lie algebra obtained by restriction of
scalars along f : R → C from the complex Lie algebra gl(Symn

C(V )). The adjunct
of Lie(πn) is a morphism of complex Lie algebras

su(2)C = f∗su(2) gl(Symn
C(V )).

L̃ie(πn)
//

We have earlier identified su(2) with the real vector space of traceless skew-hermitian
complex 2× 2-matrices. It has a basis given by the family (A1, A2, A3), where

A1 =

(
i 0
0 −i

)
, A2 =

(
0 −1
1 0

)
, and A3 =

(
0 i
i 0

)
.

The Lie bracket on su(2) is given by [A,B] = AB−BA. Similarly, the complex Lie
algebra sl(2,C) of the complex Lie group SL2(C) is given by the complex vector
space of all traceless complex 2 × 2-matrices with the Lie bracket given by the
same formula. So the inclusion of the set of traceless skew-hermitian complex 2×2-
matrices in the set of all traceless complex 2 × 2-matrices defines a morphism of
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real Lie algebras su(2)→ f∗sl(2,C), the adjunct of which is a morphism

su(2)C = f∗su(2) // sl(2,C).

of complex Lie algebras. We claim that the latter map is an isomorphism. Indeed,
one readily verifies that the family (A1, A2, A3) is a basis of both complex vector
spaces. Moreover, under this identification, the representation

sl(2,C) gl(Symn
C(V ))

L̃ie(πn)
//

is equivalent to the nth symmetric power of the standard representation of the
complex Lie algebra sl(2,C) on V .

Now, the complex vector space sl(2,C) has the much more convenient basis given
by the family (X,H, Y ), where10

X =

(
0 1
0 0

)
, H =

(
1 0
0 −1

)
, and Y =

(
0 0
1 0

)
.

Indeed, in this basis, the Lie bracket is given by the simple formulas

[X,Y ] = H, [H,X] = 2X, and [H,Y ] = −2Y.

The complex representations of sl(2,C) can be completely understood, and this,
in turn, is the starting point for understanding the representation theory of all
complex reductive Lie algebras and Lie groups. Serre’s book [3] is a very readable
introduction to this beautiful theory.

Let π : sl(2,C)→ gl(V ) be a representation on a complex vector space V , which,
at the moment, we do not assume to be finite dimensional. We write V λ ⊂ V for
the eigenspace corresponding to the eigenvalue λ ∈ C of π(H) : V → V , and we say
that x ∈ V λ has weight λ. The canonical map⊕

λ∈C V
λ // V

is always injective. If the dimension of V is finite, then it is also surjective, but, in
general, this is not the case. If x has weight λ, then the calculation

(π(H) ◦ π(X))(x) = π([H,X])(x) + (π(X) ◦ π(H))(x)

= π(2X)(x) + π(X)(λx)

= (λ+ 2)π(X)(x)

(π(H) ◦ π(Y ))(x) = π([H,Y ])(x) + (π(Y ) ◦ π(H))(x)

= −π(2Y )(x) + π(Y )(λx)

= (λ− 2)π(Y )(x)

shows that π(X)(x) has weight λ + 2 and that π(Y )(x) has weight λ − 2. We say
that an element e ∈ V is primitive of weight λ if e 6= 0 and if π(H)(e) = λe and
π(X)(e) = 0.

10The alternative notation e, h, and f for these matrices is also common.
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Theorem 13. Let π be an irreducible representation of sl(2,C) on a complex vector
space V of finite dimension n+ 1. The following hold.

(1) There exists a primitive element e ∈ V of weight λ = n.
(2) The family (e0, . . . , en), where ek = π(Y )k(e)/k!, is a basis of V .
(3) In this basis, the representation π is given by

π(H)(ek) = (λ− 2k)ek

π(X)(ek) =

{
0 if k = 0

(λ− k + 1)ek−1 if 0 < k ≤ n

π(Y )(ek) =

{
(k + 1)ek+1 if 0 ≤ k < n

0 if k = n.

Conversely, the formulas (3) define an irreducible representation of the complex Lie
algebra sl(2,C) on a complex vector space with basis (e0, . . . , en).

Proof. Since C is algebraically closed, there exists an eigenvector x ∈ V of the
linear endomorphism π(H) : V → V . The vectors π(X)k(x) with k ≥ 0 are either
eigenvectors of π(H) or zero. Since V is finite dimensional, there exists a maximal
k ≥ 0 such that e = π(X)k(x) 6= 0 and π(X)(e) = 0. Hence, this element e is a
primitive element of some weight λ ∈ C.

Now, for all k ≥ 0, we consider the elements ek ∈ V defined by

ek = π(Y )k(e)/k!,

and we also set e−1 = 0. We claim that for all k ≥ 0, the following hold:

(a) π(H)(ek) = (λ− 2k)ek
(b) π(Y )(ek) = (k + 1)ek+1

(c) π(X)(ek) = (λ− k + 1)ek−1.

Indeed, (b) holds, by definition, and (a) holds by the observation that π(Y ) lowers
weight by 2. We prove (c) by induction on k ≥ −1, the case k = −1 being trivial.
Assuming that (c) holds for k < m, the calculation

mπ(X)(em) = (π(X) ◦ π(Y ))(em−1)

= π([X,Y ])(em−1) + (π(Y ) ◦ π(X))(em−1)

= π(H)(em−1) + (λ−m+ 2)π(Y )(em−2)

= (λ− 2m+ 2 + (λ−m+ 2)(m− 1))em−1

= m(λ−m+ 1)em−1,

shows that (c) holds for k = m. This proves the claim.

Next, if the elements ek with k ≥ 0 all are non-zero, then (ek)k≥0 is a family
of eigenvectors for π(H) with pairwise distinct eigenvalues. But then this family
is linearly independent, which is not possible, because V is finite dimensional. We
also observe from (b) that ek = 0 implies that ek+1 = 0. So there exists m ≥ 0
such that ek 6= 0 for 0 ≤ k ≤ m and ek = 0 for k > m. Moreover, by (c), we have

0 = π(X)(em+1) = (λ−m)em,

so we conclude that λ = m.
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Finally, it follows immediately from (a)–(c) that the subspace W ⊂ V spanned
by (e0, . . . , em) is π-invariant. It is also non-zero, since 0 6= e = e0 ∈W , and since
(V, π) was assumed to be irreducible, we conclude that W = V and m = n. �

Corollary 14. Let n ≥ 0 be an integer.

(1) The complex Lie algebra sl(2,C) has a unique isomorphism class of irreducible
complex representations of dimension n+ 1.

(2) The real Lie algebra su(2) has a unique isomorphism class of irreducible complex
representations of dimension n+ 1.

(3) The real Lie group SU(2) has a unique isomorphism class of irreducible complex
representations of dimension n+ 1.

Proof. First, (1) follows immediately from Theorem 13. Second, (2) follows from (1)
and from the extension-of-scalars/restriction-of-scalars adjunction, since we have
an isomorphism of complex Lie algebras su(2)C → sl(2,C). Finally, we conclude
from (2) and from Corollary 12 that the connected Lie group SU(2) has at most
one isomorphism class of irreducible complex representations of dimension n+1. But
we have already proved that πn : SU(2)→ GL(Symn

C(V )) is such a representation,
so (3) follows. �

Example 15. The adjoint representation

SU(2)
Ad
// GL(su(2))

is a 3-dimensional real representation. One can show that the adjoint representation
is irreducible, and that its complexification

SU(2) GL(su(2)C)
AdC //

also is irreducible. Therefore, by Corollary 14, it is isomorphic to the symmetric
square π2 of the standard representation π = π1.

In elementary particle physics, a gauge theory begins with a compact Lie group
G of “internal symmetries,” and the complexified adjoint representation

G GL(gC)
AdC //

provides the “gauge bosons” of the theory; they are the elements of a basis of
the complex vector space gC. For example, physicists write (W+,W 0,W−) for the
basis (X,H, Y ) of suC ' sl(2,C). Its elements are the W -bosons, which mediate
the weak force. Let me explain what this means. The “elementary fermions” in the
gauge theory are basis elements of certain irreducible finite dimensional complex
representations of G. The selection of the irreducible representations that should be
considered the “elementary fermions” of the theory, however, is entirely empirical.
If π : G→ GL(V ) is an irreducible finite dimensional complex representation, then

gC gl(V )
Lie(π)C

//

is a representation of the complexified Lie algebra on V , and moreover, this map is
intertwining with respect to the G-representations AdC on the domain and End(π)
on the target. It is by means of this Lie algebra representation that the gauge bosons
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acts on the elementary fermions. See the article [1] by Baez–Huerta for more on
this.
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