
INVARIANT SUBSPACES

In this lecture, we define semisimple representations and we prove three theorems
that we will use repeatedly to show that various representations are semisimple. We
apply these theorems to three important examples, all of which are representations
of the group G = GL(V ) with V a finite dimensional k-vector space.

Definition 1. Let (V, π) be a k-linear representation of a group G. A subspace
U ⊂ V is said to be π-invariant if for all g ∈ G and u ∈ U , π(g)(u) ∈ U .

We note that the subspaces U = {0} ⊂ V and U = V ⊂ V always are π-invariant.

Example 2. Let G = (R,+) be the additive group of real numbers, and let (R[G], L)
be the left regular representation of G on the real vector space R[G] of all functions
f : R → R, which, we recall, is defined by

L(t)(f)(x) = f(−t+ x).

We say that a function f : R → R of the form

f(x) =
∑

0≤n≤d

anx
n

with a0, a1, . . . , ad ∈ R is a polynomial function of degree ≤ d, and we claim that the
subspace Ud ⊂ R[G] of polynomial functions of degree ≤ d is L-invariant. Indeed,
for t ∈ G and f : R → R as above, we calculate that

L(t)(f)(x) = f(−t+ x) =
∑

0≤n≤d

an(−t+ x)n

=
∑

0≤n≤d

an(
∑

0≤i≤n

(−t)n−ixi) =
∑

0≤i≤d

(
∑

i≤n≤d

an(−t)n−i)xi,

which shows that L(t)(f) ∈ Ud, as required.

Remark 3. Suppose that (V, π) is a k-linear representation of a group G with
dimk(V ) < ∞, and let U ⊂ V be a subspace. We first choose a basis (e1, . . . , em) of
U , and then extend it to a basis (e1, . . . , em, em+1, . . . , em+n) of V . In this situation,
the subspace U ⊂ V is π-invariant if and only if the matrix that represents the k-
linear map π(g) : V → V with respect to this basis is of the form(

A(g) B(g)

O D(g)

)
with A(g) ∈ Mm(k), B(g) ∈ Mm,n(k), and D(g) ∈ Mn(k).

We recall from algebra that if V is a k-vector space and U ⊂ V is a subspace,
then the quotient vector space V/U is defined to be the

V/U = {v + U ⊂ V | v ∈ V }
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equipped with the vector sum (v + U) + (v′ + U) = (v + v′) + U and the scalar
multiplication a · (v + U) = (a · v) + U . Moreover, a k-linear map f : V → V with
the property that f(U) ⊂ U gives rise to a k-linear map

V/U
f/U

// V/U

defined by (f/U)(v+U) = f(v)+U . If f1, f2 : V → V are two such maps, then we
have (f1 ◦ f2)/U = (f1/U) ◦ (f2/U). In other words, if GL(V,U) ⊂ GL(V ) is the
subgroup of k-linear automorphisms f : V → V such that f(U) ⊂ U , then the map

GL(V,U) GL(V/U)
−/U

//

that to f : V → V assigns f/U : V/U → V/U is a group homomorphism.1

Definition 4. Let (V, π) is a k-linear representation of a group G, and let U ⊂ V
is a π-invariant subspace.

(1) The representation (U, πU ), where πU : G → GL(U) is defined by

πU (g)(u) = π(g)(u)

for u ∈ U , is called the subrepresentation of (V, π) on U .
(2) The representation (V/U, πV/U ), where πV/U : G → GL(V/U) is defined by

πV/U (g)(v + U) = π(g)(v) + U

for v + U ∈ V/U , is called the quotient representation of (V, π) on V/U .

It is common to abuse language and simply say that πU is a subrepresentation
of π and that πV/U is a quotient representation of π.

Remark 5. Let (V, π) be a k-linear representation of a group G, and let U ⊂ V be a
π-invariant subspace. Suppose that dimk(V ) < ∞. If we choose a basis (e1, . . . em)
of U and extend it to a basis (e1, . . . , em, em+1, . . . , em+n) of V , then the family
(em+1 + U, . . . , em+n + U) is a basis of V/U , and moreover, the matrices that
represent the maps πU (g) : U → U and πV/U (g) : V/U → V/U with respect to
these bases are A(g) and D(g), if π(g) : V → V is represented by the matrix(

A(g) B(g)

O D(g)

)
with respect to the basis (e1, . . . , em, em+1, . . . , em+n).

Definition 6. A k-linear representation (V, π) of a group G is irredicible (or simple)
if V ̸= {0} and if the only π-invariant subspaces of V are {0} ⊂ V and V ⊂ V .2

We note the formal similarity of the definition of an irreducible representations
to the definition of a prime number.

Example 7. (1) Every 1-dimensional representation if irreducible. In particular, the
trivial representation of G on k given by the constant map π : G → GL(k) to every
g ∈ G assigns idk ∈ GL(k) is irreducible.

(2) The identity representation π = idGL(V ) : G = GL(V ) → GL(V ) is irreducible.

1 It is also common to write f̄ instead of f/U .
2The assumption V ̸= {0} is missing in the book.
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(3) The 2-dimensional representation π : G = (R,+) → GL2(R) given by

π(t) =

(
cos t − sin t
sin t cos t

)
is irreducible. Indeed, the map π(t) : R2 → R2 is given by counterclockwise rotation
through t radians around the origin, so it leaves no line through the origin invariant,
unless t ∈ ker(π) = 2πZ.
(4) Let G = (R,+), and let (Ud, πUd

) be the subrepresentation of the left regular
representation (R[G], L) from Example 2. If d ≥ 1, then πUd

is not irreducible, since
any Ue ⊂ Ud with 0 ≤ e < d is πUd

-invariant and {0} ⫋ Ue ⫋ Ud.

(5) Let G = Sn be the symmetric group on n letters, and let π : G → GLn(k) be
the standard permutation representation on V = kn. The subspaces

V0 = {x ∈ V |
∑

1≤i≤n xi = 0} ⊂ V

V1 = k · (1, 1, . . . , 1) ⊂ V

are π-invariant subspaces of dimension n−1 and 1, respectively. Moreover, if char(k)
does not divide n, then V1 ̸⊂ V0, so in this case, the intertwining map

V0 ⊕ V1
∼ // V

induced by the canonical inclusions is an isomorphism. We claim that both the
subrepresentations π0 = π|V0 and π1 = π|V1 are irreducible. This is clear for π1,
since dimk(V1) = 1. To prove that also π0 is irreducible, we let {0} ̸= U ⊂ V0 be a
π0-invariant subspace and prove that U = V0. We choose a nonzero vector

x =
∑

1≤i≤n

eixi ∈ U.

Since x /∈ V1, the coordinates xi are not all equal, and since U ⊂ V0 is π0-invariant,
we may assume that x1 ̸= x2. But then

π0((12))(x)− x = (e1 − e2)(x2 − x1) ∈ U,

so e1 − e2 ∈ U . Again, since U ⊂ V0 is π0-invariant, it follows that ei − ej ∈ U , for
all 1 ≤ i < j ≤ n. But this shows that

V0 = spank(ei − ej | 1 ≤ i < j ≤ n) ⊂ U,

so we conclude that U = V0. Hence, π0 is irreducible as claimed.

Definition 8. A k-linear representation (V, π) of a group G is completely reducible
if for every π-invariant subspace U ⊂ V , there exists a π-invariant subspace W ⊂ V
such that the map induced by the canonical inclusions

U ⊕W
∼ // V

is an isomorphism.

If U,W ⊂ V are as in the definition, then we say that W ⊂ V is a π-invariant
complement of U ⊂ V . We note, in this situation, that the composition

W
i

// V
p

// V/U

of the canonical inclusion and the canonical projection is a k-linear isomorphism,
which intertwines between πW and πV/U . We also remark that if a π-invariant
complement W ⊂ V of U ⊂ V exists, then it is typically *not* unique.
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Remark 9. If (V, π) is a k-linear representation of a group G with dimk(V ) < ∞,
then a π-invariant subspace U ⊂ V admits a π-invariant complement if and only
if we can find bases (e1, . . . , em) of U and (e1, . . . , em, em+1, . . . , em+n) of V such
that for all g ∈ G, the matrix that represents π(g) : V → V with respect to the
latter basis has the form (

A(g) O

O D(g)

)
.

Example 10. We consider two representations (R2, πA) of the form

G = (R,+)
πA // GL2(R)

where πA(t) = etA with A ∈ M2(R).
We first let

A =

(
0 1
0 0

)
.

Since A2 = O, we have

πA(t) = etA = E + tA =

(
1 t
0 1

)
.

It follows that the subspace

U = spanR

(
1
0

)
⊂ R2,

is πA-invariant but has no πA-invariant complement. Therefore, the representation
πA is not completely irreducible.

We next let

A =

(
1 1
0 0

)
so that A2 = A. It follows that

πA(t) = etA = E + (et − 1)A =

(
et et − 1
0 1

)
.

In this case, the same subspace

U = spanR

(
1
0

)
⊂ R2

is πA-invariant, but it now has the πA-invariant complement

W = spanR

(
1

−1

)
⊂ R2.

Moreever, the subspaces U,W ⊂ V = R2 are the only 1-dimensional πA-invariant
subspaces, so we conclude that πA is completely reducible. (Compare Theorem 13
below.)

We now prove three theorems that we will use repeatedly. The theorems are
listed as Theorem 1, 2, and 3 in Chapter 1 of the book.

Theorem 11. Let (V, π) be a k-linear representation of a group G, and let U ⊂ V
be a π-invariant subspace. If π is completely reducible, then so is πU .
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Proof. Let U1 ⊂ U be a πU -invariant subspace. We must show that U1 ⊂ U admits
a πU -invariant complement W1 ⊂ U . Now, since U1 ⊂ V is π-invariant, there exists,
by the assumption that π is completely reducible, a π-invariant subspace W ⊂ V
such that the map induced by the canonical inclusions

U1 ⊕W // V

is an isomorphism. But then

U = (U1 +W ) ∩ U = (U1 ∩ U) + (W ∩ U) = U1 + (W ∩ U),

so W1 = W ∩ U ⊂ U is a πU -invariant subspace, and the map

U1 ⊕W1
// U

induced by the canonical inclusions is an isomorphism. This shows that W1 ⊂ U is
a πU -complement of U1 ⊂ U as desired. □

Theorem 12. Let (V, π) be a completely reducible k-linear representation of a group
G with dimk(V ) < ∞. There exists π-invariant subspaces V1, . . . , Vm ⊂ V such that
the map induced by the canonical inclusions

V1 ⊕ · · · ⊕ Vm
// V

is an isomorphism and such that πV1
, . . . , πVm

are irreducible.

Proof. We argue by induction on n = dimk(V ). If n = 0, then the statement is
trivial, so we assume, inductively, that the statement has been proved for n < r
and prove it for n = r. We claim that there exists a π-invariant subspace V1 ⊂ V
such that πV1 is irreducible. Granting the claim, there exists, by the assumption
that π is completely reducible, a π-invariant complement W ⊂ V of V1 ⊂ V , and
since dimk(V1) ≥ 1, we have

dimk(W ) = dimk(V )− dimk(V1) < r.

So by the inductive hypothesis, there exist πW -invariant subspaces V2, . . . , Vm ⊂ W
such that the map induced by the canonical inclusions

V2 ⊕ · · · ⊕ Vm
// W

is an isomorphism and such that πV2 , . . . , πVm are irreducible. It follows that the
map induced by the canonical inclusions

V1 ⊕ V2 ⊕ · · · ⊕ Vm
// V

is an isomorphism and the subrepresentations πV1 , πV2 , . . . , πVm all are irreducible,
which proves the induction step. It remains to prove the claim. The set S of nonzero
π-invariant subspaces U ⊂ V is partially ordered under inclusion. It is nonempty,
since V ∈ S, and it has a minimal element, since dimk(V ) = r < ∞. Let V1 ∈ S
be such a smallest element.3 If {0} ̸= U ⊂ V1 is a πV1

-invariant subspace, then we
necessarily have U = V1, since otherwise U ∈ S is smaller than V1 ∈ S. This shows
that πV1 is irreducible, which proves the claim. □

3 In general, a minimal element V1 ∈ S is not unique.
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Theorem 13. Let (V, π) be a k-linear representation of a group G, and suppose
that there exist π-invariant subspaces V1, . . . , Vm ⊂ V such that

V = V1 + · · ·+ Vm

and such that πV1
, . . . πVm

are irreducible. If U ⊂ V is a π-invariant subspace, then
there exist {i1, . . . , ip} ⊂ {1, . . . ,m} such that the map

U ⊕ Vi1 ⊕ · · · ⊕ Vip
// V

induced by the canonical inclusions is an isomorphism. In particular, π is completely
reducible.

Proof. We let S be the set of subsets {i1, . . . , ip} ⊂ {1, . . . ,m} with the property
that the map induced by the canonical inclusions

U ⊕ Vi1 ⊕ · · · ⊕ Vip
// V

is injective. The set S is partially ordered under inclusion. It is nonempty, since
∅ ∈ S, and it is finite, since there are only finitely many subsets of {1, . . . ,m},
and therefore, it has a maximal element. So we let {i1, . . . , ip} ∈ S be a maximal
element and prove that map induced by the canonical inclusions

U ⊕ Vi1 ⊕ · · · ⊕ Vip
// V

is an isomorphism. By the definition of S, we know that the map is injective, so we
only need to show that the map is surjective, or equivalently, that

V = U + Vi1 + · · ·+ Vip .

Moreover, since V = V1 + · · ·+ Vm, it suffices to show that

Vi ⊂ U + Vi1 + · · ·+ Vip

for all 1 ≤ i ≤ m. If i ∈ {i1, . . . , ip}, then there is nothing to prove, so suppose that
i /∈ {i1, . . . , ip}. We consider the maps

U ⊕ Vi1 ⊕ · · · ⊕ Vip ⊕ Vi
// (U + Vi1 + · · ·+ Vip)⊕ Vi

// V

induced by the canonical inclusions. Since {i1, . . . , ip} ∈ S, the left-hand map is an
isomorphism, and since {i1, . . . , ip} ∈ S is maximal, the composite map is *not*
injective, so we conclude that the right-hand map is not injective. Therefore, its
kernel, which is equal to

(U + Vi1 + · · ·+ Vip) ∩ Vi ⊂ Vi

is nonzero. But πVi is irreducible, so this implies that

(U + Vi1 + · · ·+ Vip) ∩ Vi = Vi,

so Vi ⊂ U + Vi1 + · · ·+ Vip as desired. □

Remark 14. A representation (V, π) is defined to be semisimple, if there exists a
finite number of π-invariant subspaces V1, . . . , Vm ⊂ V such that the map

V1 ⊕ · · · ⊕ Vm
// V

induced by the canonical inclusions is an isomorphism and such that each of the
subrepresentations πVi is irreducible. Thus, Theorems 12 and 13 shows that a finite
dimensional representation is semisimple if and only if it is completely reducible.

6



Corollary 15. Let (V, π) be a k-linear representation of a group G, and let U ⊂ V
be a π-invariant subspace. If dimk(V ) < ∞ and if π is completely reducible, then
also the quotient representation πV/U is completely reducible.

Proof. By Theorem 12, there exists π-invariant subspaces V1, . . . , Vm ⊂ V such that
the map induced by the canonical inclusions

V1 ⊕ · · · ⊕ Vm
// V

is an isomorphism and such that each πVi is irreducible. We let V i ⊂ V/U be the
image of the composition

Vi
// V // V/U

of the canonical inclusion and the canonical projection and note that V i is zero if
and only if Vi ⊂ U . So let S = {i1, . . . , ip} ⊂ {1, . . . ,m} be the subset consisting
those i ∈ {1, . . . ,m} for which Vi ̸⊂ U . The subspace Vi ∩ U ⊂ Vi is πVi

-invariant,
so if i ∈ S, then Vi ∩ U = {0}, because πVi is irreducible. Therefore, if i ∈ S, then
the canonical map Vi → V i is an isomorphism. This shows that the πV/U -invariant
subspaces V i1 , . . . , V ip ⊂ V/U satisfy the hypothesis of Theorem 13, we conclude
that πV/U is completely reducible, as stated. □

We consider three examples, in all of which G = GL(V ) with V a k-vector space
of finite dimension n. We first consider the k-vector space Endk(V )4 of all k-linear
maps f : V → V with vector sum and scalar multiplication defined by

(f1 + f2)(v) = f1(v) + f2(v)

(a · f)(v) = a · f(v).

We consider the representation of G on Endk(V ) by left multiplication:

Proposition 16. Let V be a k-vector space of finite dimension n, and define

G = GL(V )
λ // GL(Endk(V ))

by λ(g)(f) = g ◦ f . The representation (Endk(V ), λ) is completely reducible.

Proof. We choose a basis (v1, . . . ,vn) of V and define

Lj = {f ∈ Endk(V ) | f(vi) = 0 for i ̸= j} ⊂ Endk(V ).

It is a λ-invariant subspace. Indeed, if g ∈ G and f ∈ Lj , then

λ(g)(f)(vi) = g(f(vi)) = 0

for i ̸= j, because g is k-linear, so λ(g)(f) ∈ Lj . Moreover, the map

Lj

hj
// V

defined by hj(f) = f(vj) is an isomorphism. It is also intertwining between λ and
the identity representation of G on V . Indeed,

hj(λ(g)(f)) = hj(g ◦ f) = (g ◦ f)(vj) = g(f(vj)) = id(g)(f(vj)) = id(g)(hj(f)).

4The book writes L(V ) instead of Endk(V ).
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Thus, hj : (Lj , λLj
) → (V, id) is an isomorphism, and since (V, id) is irreducible, so

is (Lj , λLj ). Finally, the map induced by the canonical inclusions

L1 ⊕ · · · ⊕ Ln
// Endk(V )

is an isomorphism, since every f ∈ Endk(V ) can be written uniquely as

f = f1 + · · ·+ fn

with fj ∈ Endk(V ) defined by

fj(vi) =

{
f(vj) if i = j

0 if i ̸= j.

Hence, Theorem 13 shows that (Endk(V ), λ) is completely reducible, as stated. □

We next consider the adjoint representation of G on Endk(V ). It is an example of
the adjoint representation Ad: G → GL(g) of a reductive group on its Lie algebra.

Proposition 17. Let V be a k-vector space of finite dimension n, and define

G = GL(V )
Ad // GL(Endk(V ))

by Ad(g)(f) = g ◦ f ◦ g−1. The adjoint representation (Endk(V ),Ad) is completely
reducible, provided that char(k) does not divide n.

Proof. We let t ⊂ Endk(V ) be the 1-dimensional subspace spanned by idV , and let
sln ⊂ Endk(V ) be the subspace consisting of the k-linear maps f : V → V with
tr(f) = 0. Both subspaces are Ad-invariant. In the case of sln, we use the fact from
linear algebra that tr(g ◦f ◦g−1) = tr(f). By our assumption that char(k) does not
divide n, we have tr(idV ) = n ̸= 0 ∈ k, so t ∩ sln = {0}, and hence, the map

t⊕ sln // Endk(V )

induced by the canonical inclusions is an isomorphism. It turns out that Adt and
Adsln both are irreducible. This is trivial in the case of the t, but the proof for sln
is not so simple. We prove this for n = 2 in the appendix. So Theorem 13 shows
that π is completely reducible. □

Finally, we consider a representation of G = GL(V ) on the k-vector space

B(V ) = {f : V × V → k | f is k-bilinear} ≃ Homk(V ⊗k V, k)

of k-bilinear forms on V .

Proposition 18. Let V be a k-vector space of finite dimension n, and define

G = GL(V )
π // GL(B(V ))

by π(g)(f)(x,y) = f(g−1(x), g−1(y)). The representation (B(V ), π) is completely
reducible, provided that char(k) ̸= 2.

Proof (Incomplete). Let B±(V ) ⊂ B(V ) be the subspaces of symmetric forms and
skew-symmetric forms, respectively. We recall that f ∈ B+(V ) if and only if

f(x,y) = f(y,x)
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for all x,y ∈ V , and that f ∈ B−(V ) if and only if

f(x,y) = −f(y,x)

for all x,y ∈ V . Clearly, B±(V ) ⊂ B(V ) are both π-invariant, and if char(k) ̸= 2,
then the map induced by the canonical inclusions

B+(V )⊕B−(V ) // B(V )

is an isomorphism. One can prove that πB±(V ) both are irreducible, but we will not
do so here. So Theorem 13 shows that π is completely reducible. □

Appendix: The adjoint representation

We include a proof of the following theorem, which we used above.

Theorem 19. If char(k) ̸= 2, then the adjoint representation

GL2(k)
Ad // GL(sl2(k))

is irreducible.

Proof. We must show that if U ⊂ sl2(k) is an Ad-invariant subspace, then either
U = {0} or U = sl2(k). So we assume that U ̸= {0} and proceed to prove that
U = sl2(k). We fix the basis (H,X, Y ) of sl2(k), where

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
.

We claim that H ∈ U if and only if X ∈ U if and only if Y ∈ U . First, we have(
0 1
1 0

)
X

(
0 1
1 0

)
= Y,

(
0 1
1 0

)
Y

(
0 1
1 0

)
= X,

so if X ∈ U , then Y ∈ U and vice versa. Second, we use the fact that X2 = 0 so
that 1 +X ∈ GL2(k) with inverse 1−X. Hence, the calculation

HX = X, XH = −X, XHX = 0

shows that

(1 +X)H(1−X) = H −HX +XH −XHX = H − 2X.

Therefore, if H ∈ U , then 2X ∈ U , and hence X ∈ U , since we are assuming that
2 ̸= 0 in k. Similarly, the calculation

Y X =

(
0 0
0 1

)
, XY =

(
1 0
0 0

)
, XY X = X

shows that

(1 +X)Y (1−X) = Y − Y X +XY −XYX = Y +H −X.

Therefore, since we have already seen that Y ∈ U if and only if X ∈ U , we conclude
that if Y ∈ U , then H = (Y +H −X)− Y +X ∈ U . This proves the claim.

It remains to prove that at least one of H, X, and Y is in U . Since U is nonzero,
there exists 0 ̸= A ∈ sl2(k). We write

A = aH + bX + cY =

(
a b
c −a

)
,
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with (a, b, c) ̸= (0, 0, 0). For all t ∈ k∗, we have

g(t) =

(
t 0
0 1

)
∈ GL2(k)

with inverse g(t)−1 = g(t−1). Since U is assumed Ad-invariant, the calculation

Ad(g(t))(A) = g(t)Ag(t)−1 =

(
a tb

t−1c −a

)
= aH + tbX + t−1cY

shows that aH + tbX + t−1cY ∈ U for all t ∈ k∗. We wish to conclude that each of
aH, bX, and cY is in U . So we wish to show that the system of linear equations

aH + rbX + r−1cY = aH

aH + sbX + s−1cY = bX

aH + tbX + t−1cY = cY

has a solution with r, s, t ∈ k∗. The calculation

det

1 r r−1

1 s s−1

1 t t−1

 = −(rst)−1(r − s)(r − t)(s− t)

shows that a solution exists, provided that k∗ has order at least three. Hence, if
this is the case, then aH, bX, and cY are all in U , and since (a, b, c) ̸= (0, 0, 0), it
follows that at least one of H, X, and Y is in U , so we are done.

The only missing case is k = F3, where k
∗ = {±1} only has order 2. In this case,

the argument above shows that

spank(aH + bX + cY, aH − bX − cY ) ⊂ U,

so aH ∈ U and bX + cY ∈ U . If a ̸= 0, then H ∈ U . Also, if a = b = 0, then c ̸= 0,
so Y ∈ U , and similarly, if a = c = 0, then b ̸= 0, so X ∈ U . Hence, it only remains
to prove that both the subspaces

V = spank(Ad(g)(X + Y ) | g ∈ GL2(k)) ⊂ U

W = spank(Ad(g)(X − Y ) | g ∈ GL2(k)) ⊂ U

are equal to U . The calculation

Ad(

(
1 −1
1 1

)
)(X + Y ) =

(
1 −1
1 1

)
(X + Y )

(
−1 −1
1 −1

)
= H

shows that H ∈ V , so that V = U , and the calculation

Ad(

(
1 1
0 1

)
)(X − Y ) =

(
1 1
0 1

)
(X − Y )

(
1 −1
0 1

)
= −H −X − Y

shows that H+X+Y ∈ W , so W = U , since, by the argument above, H ∈ W . □
Remark 20. We note that if char(k) = 2, then the adjoint representation

GL2(k)
Ad // GL(sl2(k))

is not irreducible. Indeed, since H = 1, the 1-dimensional subspace

spank(H) ⊂ sl2(k)

is Ad-invariant.
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