INVARIANT SUBSPACES

In this lecture, we define semisimple representations and we prove three theorems
that we will use repeatedly to show that various representations are semisimple. We
apply these theorems to three important examples, all of which are representations
of the group G = GL(V) with V a finite dimensional k-vector space.

Definition 1. Let (V,7) be a k-linear representation of a group G. A subspace
U C V is said to be m-invariant if for all g € G and uw € U, 7(g)(u) € U.

We note that the subspaces U = {0} C V and U =V C V always are m-invariant.

Ezample 2. Let G = (R, +) be the additive group of real numbers, and let (R[G], L)
be the left regular representation of G on the real vector space R[G] of all functions
f: R — R, which, we recall, is defined by

L@)(f)(x) = f(=t+ ).
We say that a function f: R — R of the form
fz) = Z anz"”
0<n<d

with ag, aq,...,aq € Ris a polynomial function of degree < d, and we claim that the
subspace Uy C R[G] of polynomial functions of degree < d is L-invariant. Indeed,
for t € G and f: R — R as above, we calculate that

L) (f) (@) = f(~t+a)= Y an(~t+a)"

0<n<d
= D a( Y (=) = Y (Y an(=t)" ),
0<n<d  0<i<n 0<i<d i<n<d

which shows that L(¢)(f) € Uy, as required.

Remark 3. Suppose that (V,7) is a k-linear representation of a group G with
dimg (V) < oo, and let U C V be a subspace. We first choose a basis (e, ..., e;,) of
U, and then extend it to a basis (e1, ..., €m, €mt1, - - -, €m+n) of V. In this situation,
the subspace U C V is m-invariant if and only if the matrix that represents the k-
linear map 7(g): V — V with respect to this basis is of the form

(A(g) B(Q))
O | D(g)
with A(g) € M,,(k), B(g) € My, n(k), and D(g) € M, (k).

We recall from algebra that if V' is a k-vector space and U C V is a subspace,
then the quotient vector space V/U is defined to be the

VIU={v+UCV|veV}
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equipped with the vector sum (v + U) + (v/ + U) = (v + v’') + U and the scalar
multiplication a - (v + U) = (a - v) + U. Moreover, a k-linear map f: V — V with
the property that f(U) C U gives rise to a k-linear map

viv v

defined by (f/U)(v+U) = f(v)+U.If f1, fa: V — V are two such maps, then we
have (f1 0 f2)/U = (f1/U) o (f2/U). In other words, if GL(V,U) C GL(V) is the
subgroup of k-linear automorphisms f: V' — V such that f(U) C U, then the map

aLv,v) — 2 qrviu)
that to f: V — V assigns f/U: V/U — V/U is a group homomorphism.!

Definition 4. Let (V, ) is a k-linear representation of a group G, and let U C V'
is a w-invariant subspace.

(1) The representation (U, 7y ), where my: G — GL(U) is defined by

mu(g)(u) = 7(g)(u)
for uw € U, is called the subrepresentation of (V,7) on U.
(2) The representation (V/U, my,y), where my 2 G — GL(V/U) is defined by

Ty (9)(v +U) = 7(g)(v) +U
for v+ U € V/U, is called the quotient representation of (V,7) on V/U.

It is common to abuse language and simply say that 7y is a subrepresentation
of m and that my,y; is a quotient representation of 7.

Remark 5. Let (V, ) be a k-linear representation of a group G, and let U C V be a
m-invariant subspace. Suppose that dimg (V) < co. If we choose a basis (eq, ... €;,)
of U and extend it to a basis (e1,...,€m,€m11,.-.,€mtn) of V, then the family
(em+1 + U,...,enin + U) is a basis of V/U, and moreover, the matrices that
represent the maps 7y (g9): U — U and my,y(g): V/U — V/U with respect to
these bases are A(g) and D(g), if 7(g): V — V is represented by the matrix

(A(g) B(Q))
O | D(g)
with respect to the basis (e, ..., €m,€mt1s-- -\ €min)-

Definition 6. A k-linear representation (V, ) of a group G is irredicible (or simple)
if V' # {0} and if the only m-invariant subspaces of V are {0} C V and V C V.2

We note the formal similarity of the definition of an irreducible representations
to the definition of a prime number.

Ezample 7. (1) Every 1-dimensional representation if irreducible. In particular, the
trivial representation of G on k given by the constant map 7: G — GL(k) to every
g € G assigns id; € GL(k) is irreducible.
(2) The identity representation 7 = idgr,v): G = GL(V) — GL(V) is irreducible.
11t is also common to write f_ instead of f/U.

2 The assumption V # {0} is missing in the book.
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(3) The 2-dimensional representation 7: G = (R, +) — GL3(R) given by
cost —sint
() = (sint cos t)
is irreducible. Indeed, the map (t): R? — R? is given by counterclockwise rotation

through t radians around the origin, so it leaves no line through the origin invariant,
unless t € ker(m) = 27Z.

(4) Let G = (R, +), and let (Ug, 7y,) be the subrepresentation of the left regular
representation (R[G], L) from Example 2. If d > 1, then 7y, is not irreducible, since
any U, C Uy with 0 < e < d is 7y,-invariant and {0} & U, G Ua.

(5) Let G = S,, be the symmetric group on n letters, and let 7: G — GL, (k) be
the standard permutation representation on V' = k™. The subspaces

Vo={zeV|X .ic,zi=0}CV
i=k-(1,1,...,1) CV
are T-invariant subspaces of dimension n—1 and 1, respectively. Moreover, if char(k)
does not divide n, then V7 ¢ Vj, so in this case, the intertwining map
VO D V1 L) 1%

induced by the canonical inclusions is an isomorphism. We claim that both the
subrepresentations my = 7|y, and m; = 7|y, are irreducible. This is clear for 7y,
since dimy (V1) = 1. To prove that also g is irreducible, we let {0} # U C V; be a
mo-invariant subspace and prove that U = V{;. We choose a nonzero vector

T = g e;x; € U.
1<i<n

Since x ¢ V7, the coordinates z; are not all equal, and since U C Vj is mp-invariant,
we may assume that 1 # xo. But then

m0((12))(x) — = = (e1 — es) (w2 — x1) € U,

so e; — ey € U. Again, since U C Vp is mp-invariant, it follows that e; —e; € U, for
all 1 <17 < j < n. But this shows that

Vo =spang(e; —e; |1 <i<j<n)CU,
so we conclude that U = V{y. Hence, g is irreducible as claimed.

Definition 8. A k-linear representation (V, ) of a group G is completely reducible
if for every m-invariant subspace U C V, there exists a m-invariant subspace W C V'
such that the map induced by the canonical inclusions

UeW —=V
is an isomorphism.
If UyW C V are as in the definition, then we say that W C V is a m-invariant
complement of U C V. We note, in this situation, that the composition
w—5Vv-Lsv/iU
of the canonical inclusion and the canonical projection is a k-linear isomorphism,
which intertwines between my and my,y. We also remark that if a m-invariant

complement W C V of U C V exists, then it is typically *not* unique.
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Remark 9. If (V, ) is a k-linear representation of a group G with dimy (V) < oo,
then a m-invariant subspace U C V admits a w-invariant complement if and only
if we can find bases (eq,...,e,) of U and (e1,...,€m,€mt1,---,€min) of V such
that for all ¢ € G, the matrix that represents m(g): V' — V with respect to the

latter basis has the form
(A(g) o) >
O | D(g)

Ezample 10. We consider two representations (R?,74) of the form
G = (R,+) — GLy(R)
where 74(t) = ' with A € Ms(R).

We first let
0 1
A <0 0).

1t
TaAt) =t = F+tA= (0 1).

Since A% = O, we have

It follows that the subspace
U = spang <(1)) C R?,
is ma-invariant but has no 7 4-invariant complement. Therefore, the representation
T4 is not completely irreducible.
We next let
11
=0 o)
so that A2 = A. It follows that
t ot
TAlt) = et = E+ (el —1)A = (% ¢ 1 1).

In this case, the same subspace

U = spany (é) C R?

is ma-invariant, but it now has the m-invariant complement
1
W = spang (_1> C R2

Moreever, the subspaces U, W C V = R? are the only 1-dimensional 7 4-invariant

subspaces, so we conclude that 74 is completely reducible. (Compare Theorem 13
below.)

We now prove three theorems that we will use repeatedly. The theorems are
listed as Theorem 1, 2, and 3 in Chapter 1 of the book.

Theorem 11. Let (V,x) be a k-linear representation of a group G, and let U C 'V
be a w-invariant subspace. If w is completely reducible, then so is 7y .
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Proof. Let Uy C U be a my-invariant subspace. We must show that U; C U admits
a my-invariant complement W7, C U. Now, since U; C V is w-invariant, there exists,
by the assumption that 7 is completely reducible, a m-invariant subspace W C V'
such that the map induced by the canonical inclusions

oW —YV
is an isomorphism. But then
U=U+W)NU={UNnU)+(WnU)=U,+(WnU),
so Wy =W NU CU is a my-invariant subspace, and the map
UyeW, —U

induced by the canonical inclusions is an isomorphism. This shows that W7 C U is
a my-complement of Uy C U as desired. O

Theorem 12. Let (V, ) be a completely reducible k-linear representation of a group
G with dimy (V') < co. There exists w-invariant subspaces Vi, ..., V,, CV such that
the map induced by the canonical inclusions

nwe---eV, —V

s an isomorphism and such that my,,...,my, are irreducible.

Proof. We argue by induction on n = dimg (V). If n = 0, then the statement is
trivial, so we assume, inductively, that the statement has been proved for n < r
and prove it for n = r. We claim that there exists a m-invariant subspace V; C V
such that 7y, is irreducible. Granting the claim, there exists, by the assumption
that 7 is completely reducible, a m-invariant complement W C V of V3 C V, and
since dimg (V1) > 1, we have

dimg (W) = dimg (V) — dimg (V) < 7.

So by the inductive hypothesis, there exist 7y -invariant subspaces Vs, ..., V,, CW
such that the map induced by the canonical inclusions

is an isomorphism and such that my,,..., 7y, are irreducible. It follows that the
map induced by the canonical inclusions

WieVe® -0V, —V

is an isomorphism and the subrepresentations my,, my,, ..., Ty, all are irreducible,
which proves the induction step. It remains to prove the claim. The set .S of nonzero
m-invariant subspaces U C V is partially ordered under inclusion. It is nonempty,
since V € S, and it has a minimal element, since dimg(V) = r < co. Let V4 € S
be such a smallest element.® If {0} # U C V; is a 7y, -invariant subspace, then we
necessarily have U = V7, since otherwise U € S is smaller than V; € S. This shows
that 7y, is irreducible, which proves the claim. O

3In general, a minimal element V; € S is not unique.
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Theorem 13. Let (V,7) be a k-linear representation of a group G, and suppose

that there exist w-invariant subspaces Vi,...,V,, CV such that
V=Vi+--+Vy,
and such that my,,...my, are irreducible. If U C V is a w-invariant subspace, then

there exist {i1,...,ip} C{1,...,m} such that the map
UeoV,® oV, —V
induced by the canonical inclusions is an isomorphism. In particular, w is completely
reducible.
Proof. We let S be the set of subsets {i1,...,4p} C {1,...,m} with the property
that the map induced by the canonical inclusions
UoV,® oV, —V
is injective. The set S is partially ordered under inclusion. It is nonempty, since
() € S, and it is finite, since there are only finitely many subsets of {1,...,m},

and therefore, it has a maximal element. So we let {i1,...,4,} € S be a maximal
element and prove that map induced by the canonical inclusions

UoV,®-oV, —V
is an isomorphism. By the definition of S, we know that the map is injective, so we
only need to show that the map is surjective, or equivalently, that
V=U+Vy+ - +V,.
Moreover, since V = V; 4 --- 4+ V,,,, it suffices to show that
VicU+ Vi, +-+V,
forall1 <i<m.Ifi e {i,...,ip}, then there is nothing to prove, so suppose that
i ¢ {i1,...,ip}. We consider the maps
UeVie-- oV, oVi— U+Viy+--+Vi,)oVi—V

induced by the canonical inclusions. Since {i1,...,%,} € S, the left-hand map is an
isomorphism, and since {i1,...,i,} € S is maximal, the composite map is *not*
injective, so we conclude that the right-hand map is not injective. Therefore, its
kernel, which is equal to

U+Viy+---+V, )NV, CV;

is nonzero. But 7y; is irreducible, so this implies that
U+Vi,+--+ Vi, )NV =V,

soV; CU+V; +---+ 1V, as desired. O

Remark 14. A representation (V,7) is defined to be semisimple, if there exists a
finite number of w-invariant subspaces Vi,...,V,, C V such that the map

i -aVy ——V

induced by the canonical inclusions is an isomorphism and such that each of the

subrepresentations 7y, is irreducible. Thus, Theorems 12 and 13 shows that a finite

dimensional representation is semisimple if and only if it is completely reducible.
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Corollary 15. Let (V,m) be a k-linear representation of a group G, and let U C V
be a w-invariant subspace. If dimg (V) < oo and if w is completely reducible, then
also the quotient representation my,y is completely reducible.

Proof. By Theorem 12, there exists m-invariant subspaces V1, ..., V,, C V such that
the map induced by the canonical inclusions

Vi@ @V, —V

is an isomorphism and such that each 7y, is irreducible. We let V; C V/U be the
image of the composition

Vi—V——V/U

of the canonical inclusion and the canonical projection and note that V; is zero if
and only if V; C U. So let S = {i1,...,i,} C {1,...,m} be the subset consisting
those i € {1,...,m} for which V; ¢ U. The subspace V; N U C V; is my,-invariant,
so if 1 € S, then V; NU = {0}, because my, is irreducible. Therefore, if ¢ € S, then
the canonical map V; — V; is an isomorphism. This shows that the Ty y-invariant

subspaces Vil,...,Vip C V/U satisfy the hypothesis of Theorem 13, we conclude
that 7y is completely reducible, as stated. O

We consider three examples, in all of which G = GL(V') with V' a k-vector space
of finite dimension n. We first consider the k-vector space Endy(V)?* of all k-linear
maps f: V — V with vector sum and scalar multiplication defined by

(fi+ f2)(v) = f1(v) + f2(v)
(a-f)(v) =a-f(v).
We consider the representation of G on Endy (V') by left multiplication:

Proposition 16. Let V be a k-vector space of finite dimension n, and define
G = GL(V) —2— GL(End,(V))
by Mg)(f) = go f. The representation (Endy(V'),\) is completely reducible.

Proof. We choose a basis (v1,...,v,) of V and define
L; ={f € Endg(V) | f(v;) =0 for i # j} C Endg(V).
It is a A-invariant subspace. Indeed, if g € G and f € L;, then
AMg) () (i) = g(f(vi)) = 0
for i # j, because g is k-linear, so A(g)(f) € L;. Moreover, the map

h;j
Ly ——V

defined by h,;(f) = f(v;) is an isomorphism. It is also intertwining between A and
the identity representation of G on V. Indeed,

hi(A9)(f)) = hj(g e f) = (g © f)(v;) = g(f(v;)) = id(g)(f(v;)) = id(g)(h;([))-

4The book writes L(V) instead of Endy (V).
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Thus, h;: (Lj, ;) — (V,id) is an isomorphism, and since (V,id) is irreducible, so
is (Lj, Az, ). Finally, the map induced by the canonical inclusions

Li® - @ L, —— Endg(V)
is an isomorphism, since every f € Endg (V') can be written uniquely as

f=fte
with f; € Endy (V) defined by
flvg) ifi=j
fi(vi) = S
0 if i # j.
Hence, Theorem 13 shows that (Endg(V'), A) is completely reducible, as stated. O
We next consider the adjoint representation of G on Endg (V). It is an example of
the adjoint representation Ad: G — GL(g) of a reductive group on its Lie algebra.
Proposition 17. Let V be a k-vector space of finite dimension n, and define
G = GL(V) —2% GL(End,(V))
by Ad(g)(f) =go fog™t. The adjoint representation (Endy(V), Ad) is completely
reducible, provided that char(k) does not divide n.

Proof. We let t C Endg (V') be the 1-dimensional subspace spanned by idy, and let
50, C Endg (V) be the subspace consisting of the k-linear maps f: V — V with
tr(f) = 0. Both subspaces are Ad-invariant. In the case of sl,,, we use the fact from
linear algebra that tr(go fog~!) = tr(f). By our assumption that char(k) does not
divide n, we have tr(idy) =n # 0 € k, so tNsl, = {0}, and hence, the map

tpsl, —— Endk(V)

induced by the canonical inclusions is an isomorphism. It turns out that Ad¢ and
Adg, both are irreducible. This is trivial in the case of the t, but the proof for sl,
is not so simple. We prove this for n = 2 in the appendix. So Theorem 13 shows
that 7 is completely reducible. O
Finally, we consider a representation of G = GL(V') on the k-vector space
B(V)={f:V xV = k| fis k-bilinear} ~ Homy(V ® V, k)

of k-bilinear forms on V.

Proposition 18. Let V' be a k-vector space of finite dimension n, and define
G = GL(V) —— GL(B(V))

by 7(9)(f)(z,y) = f(g7 (x),97 (y)). The representation (B(V), ) is completely
reducible, provided that char(k) # 2.

Proof (Incomplete). Let B¥ (V) C B(V) be the subspaces of symmetric forms and
skew-symmetric forms, respectively. We recall that f € BT(V) if and only if

f(may) = f(yaw)
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for all ¢,y € V, and that f € B~ (V) if and only if

f($7y) = _f(va)

for all ¢,y € V. Clearly, B*(V) C B(V) are both m-invariant, and if char(k) # 2,
then the map induced by the canonical inclusions

BH (V)& B~ (V) — B(V)

is an isomorphism. One can prove that 7=y both are irreducible, but we will not
do so here. So Theorem 13 shows that 7 is completely reducible. O

APPENDIX: THE ADJOINT REPRESENTATION

We include a proof of the following theorem, which we used above.

Theorem 19. If char(k) # 2, then the adjoint representation

GLs (k) —2%5 GL(sly(k))
is irreducible.
Proof. We must show that if U C sly(k) is an Ad-invariant subspace, then either

U = {0} or U = sly(k). So we assume that U # {0} and proceed to prove that
U = sly(k). We fix the basis (H, X,Y) of sly(k), where

p=(0 0 x=(0 D) v=(0 0

We claim that H € U if and only if X € U if and only if Y € U. First, we have

(o)) (o)r(o)-x
so if X € U, then Y € U and vice versa. Second, we use the fact that X2 = 0 so
that 1+ X € GLy(k) with inverse 1 — X. Hence, the calculation
HX =X, XH=-X, XHX =0
shows that
(1+X)H1l-X)=H-HX+XH-XHX =H —2X.

Therefore, if H € U, then 2X € U, and hence X € U, since we are assuming that
2 # 0 in k. Similarly, the calculation

0 0 1 0
YX_(O 1>7 XY—(O O)’ XYX =X

shows that
1I+X)Y1-X)=Y -YX+XY-XYX=Y+H-X.

Therefore, since we have already seen that Y € U if and only if X € U, we conclude
that f Y € U, then H = (Y + H — X) — Y + X € U. This proves the claim.

It remains to prove that at least one of H, X, and Y is in U. Since U is nonzero,
there exists 0 # A € sly(k). We write

A=aH +bX +cY = (“ b),
C —a
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with (a,b,c¢) # (0,0,0). For all ¢ € k*, we have

g(t) = (é ?) € GLa(k)

with inverse g(t)~! = g(¢~!). Since U is assumed Ad-invariant, the calculation
Ad(g(t))(A) = g(t)Ag(t) ™ = <talc i) =aH +thX +t ey
shows that aH +tbX +t~'cY € U for all t € k*. We wish to conclude that each of
aH, bX, and ¢Y is in U. So we wish to show that the system of linear equations
aH +rbX +r 'Y =aH
aH + sbX + s ey =bX
al +tbX +t ey =cY
has a solution with r, s,t € k*. The calculation

1 r i

det |1 s s71| =—(rst) Y(r—s)(r—t)(s—t)
I

shows that a solution exists, provided that £* has order at least three. Hence, if
this is the case, then aH, bX, and ¢Y are all in U, and since (a, b, c) # (0,0,0), it
follows that at least one of H, X, and Y is in U, so we are done.

The only missing case is k = F3, where k* = {£1} only has order 2. In this case,
the argument above shows that

spang(aH +bX +cY,aH —bX —cY) C U,

soaH € U and bX +c¢Y € U. If a # 0, then H € U. Also, if a = b =0, then ¢ # 0,
so Y € U, and similarly, if a = ¢ = 0, then b # 0, so X € U. Hence, it only remains
to prove that both the subspaces

V =span, (Ad(g)(X +Y) | g € GLa(k)) C U
W = span, (Ad(g)(X —Y) | g € GLa(k)) C U
are equal to U. The calculation
1 -1 1 -1 -1 -1
Ac1(<1 1))(X+Y) = (1 1) (X+Y) ( 1 _1) =H

shows that H € V, so that V = U, and the calculation

11 11 1 -1
Ad(<0 1>)(XY)<O 1) (X-Y) (0 1>HXY
shows that H+ X +Y € W, so W = U, since, by the argument above, H €¢ W. O

Remark 20. We note that if char(k) = 2, then the adjoint representation
GLsy (k) -4 GL(sly(k))
is not irreducible. Indeed, since H = 1, the 1-dimensional subspace
spany, (H) C sla(k)

is Ad-invariant.
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