
COMPLETE REDUCIBILITY OF REPRESENTATIONS OF

COMPACT GROUPS

We recall from last time that a k-linear representation (V, π) of a group G is
defined to be completely reducible if for every π-invariant subspace U ⊂ V , there
exists a π-invariant subspace W ⊂ V such that the map

U ⊕W // V

induced by the canonical inclusions is an isomorphism. In this lecture, we will show
that every finite dimensional continuous real or complex representation of a compact
topological group is completely reducible.

Definition 1. A finite dimensional real (resp. complex) representation (V, π) of
a group G is orthogonal (resp. unitary), if there exists an inner product (resp. a
hermitian inner product) 〈−,−〉 : V × V → k such that

〈π(g)(v1), π(g)(v2)〉 = 〈v1,v2〉

for all g ∈ G and v1,v2 ∈ V .1

Remark 2. If f : V → V is a linear endomorphism of a finite dimensional real
(resp. complex) vector space with inner product (resp. hermitian inner product)
〈−,−〉, then its adjoint f∗ : V → V is the unique linear map such that

〈f∗(v1),v2〉 = 〈v1, f(v2)〉

for all v1,v2 ∈ V . Hence, in Definition 1, the requirement that

〈π(g)(v1), π(g)(v2)〉 = 〈v1,v2〉

for all g ∈ G and v1,v2 ∈ V is equivalent to the requirement that

π(g)∗ = π(g−1)

for all g ∈ G.

Definition 3. Let (V, 〈−,−〉) be a finite dimensional real inner product space
(resp. hermitian inner product space). The orthogonal group (resp. the unitary
group) is the subgroup2 O(V, 〈−,−〉) ⊂ GL(V ) (resp. U(V, 〈−,−〉) ⊂ GL(V )) of all
k-linear maps f : V → V with the property that

〈f(v1), f(v2)〉 = 〈v1,v2〉

for all v1,v2 ∈ V .

So a finite dimensional real (resp. complex) representation (V, π) is orthogonal
(resp. unitary) if and only if the group homomorphism π : G → GL(V ) takes values
in the subgroup O(V, 〈−,−〉) ⊂ GL(V ) (resp. U(V, 〈−,−〉) ⊂ GL(V )) for some
inner product (resp. hermitian inner product) 〈−,−〉 on V .

1 So that (V, π) is orthogonal (resp. unitary) means that it has the *property* that such an
inner product (resp. a hermitian inner product) exists. It does not mean that the *structure* of
such an inner product (resp. hermitian inner product) has been chosen.

2Often O(V, 〈−,−〉) and U(V, 〈−,−〉) are abbreviated O(V ) and U(V ), but we will not do so.
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Proposition 4. Orthogonal (resp. unitary) representations are completely reducible.

Proof. We let (V, π) be an orthogonal (resp. unitary) representation of a group G
and choose an inner product (resp. a hermitian inner product) 〈−,−〉 on V such
that π(g)∗ = π(g−1) for all g ∈ G. If U ⊂ V is a subspace, then its orthogonal
complement with respect to 〈−,−〉 is the subspace defined by

U⊥ = {v ∈ V | 〈v,u〉 = 0 for all u ∈ U} ⊂ V.

We claim that U ⊂ V is π-invariant if and only if U⊥ ⊂ V is π-invariant. Indeed,
given any linear endomorphism f : V → V , we have

f(U) ⊂ U ⇔ f∗(U⊥) ⊂ U⊥,

and therefore, we conclude that

U ⊂ V is π-invariant ⇔

π(g)(U) ⊂ U for all g ∈ G ⇔

π(g)∗(U⊥) ⊂ U⊥ for all g ∈ G ⇔

π(g−1)(U⊥) ⊂ U⊥ for all g ∈ G ⇔

π(g)(U⊥) ⊂ U⊥ for all g ∈ G ⇔

U⊥ ⊂ V is π-invariant,

as claimed. In particular, every π-invariant subspace U ⊂ V has a π-invariant
complement, namely, U⊥ ⊂ V , so π is completely reducible. �

We first consider finite groups.

Theorem 5. Every finite dimensional real (resp. complex) representation of a finite
group is orthogonal (resp. unitary).

Proof. Let (V, π) be a finite dimensional real (resp. complex) representation of
a finite group G. We choose an arbitrary inner product (resp. hermitian inner
product) 〈−,−〉0 : V × V → k and define 〈−,−〉 : V × V → k by

〈v1,v2〉 =
1

|G|

∑
x∈G

〈π(x)(v1), π(x)(v2)〉0.

It is easy to check that 〈−,−〉 is an inner product (resp. a hermitian inner product),
and we claim that it is π-invariant. Indeed, for all g ∈ G, we have

〈π(g)(v1), π(g)(v2)〉 =
1

|G|

∑
x∈G

〈π(x)(π(g)(v1)), π(x)(π(g)(v2))〉0

=
1

|G|

∑
x∈G

〈(π(x) ◦ π(g))(v1), (π(x) ◦ π(g))(v2)〉0

=
1

|G|

∑
x∈G

〈π(xg)(v1), π(xg)(v2)〉0

=
1

|G|

∑
y∈G

〈π(y)(v1), π(y)(v2)〉0

= 〈v1,v2〉

as desired. �
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Definition 6. A topological group is a group G is a topology such that the maps
µ : G×G → G and ι : G → G given by µ(g, h) = gh and ι(g) = g−1 are continuous.
A compact group is a topological group, whose underlying topological space is
compact and Hausdorff.

Example 7. (1) A finite group with the discrete topology is a compact group.

(2) If V is a finite dimensional real or complex vector space, then GL(V ) is a
topological group with the compact-open topology. It is a locally compact group,
but it is not compact, unless V = {0}.

(3) If (V, 〈−,−〉) is a finite dimensional real inner product space (resp. hermitian
inner product space), then O(V, 〈−,−〉) (resp. U(V, 〈−,−〉)) is a topological group
with the compact-open topology. It is a compact group.

We will only consider (real or complex) representations (V, π) of a topological
group G that are continuous in the sense that the group homorphism

G
π

// GL(V )

is continuous.

Example 8. Suppose that (V, 〈−,−〉) be a finite dimensional real inner product
space (resp. hermitian inner product space). The canonical inclusion

O(V, 〈−,−〉)
π

// GL(V )

is continuous and a group homomorphism, so (V, π) is a continuous representation.

Theorem 9. Let G be a compact group, and let (V, π) be a finite dimensional
continuous real (resp. complex) representation of G. Then (V, π) is orthogonal
(resp. unitary), and hence, completely reducible.

We will give two different proofs of the theorem. The first proof uses the following
deep theorem. This is a important and useful theory, but it will take us too far afield
to prove it here. A proof can be found in [1, Chapter 7, §1, No. 2, Theorem 1].

Theorem 10. Let G be a compact group. There exists a map

C0(G,C) C

f
∫
G
f(x)dx

//

✤

//

with the following properties:

(1) It is linear.
(2) It is positive in the sense that if f ∈ C0(G,C) takes non-negative real values,

then
∫
G
f(x)dx ≥ 0, and the integral is zero only if f = 0.

(3) It is right invariant in the sense that for all f ∈ C0(G,C) and g ∈ G,∫
G

f(xg)dx =

∫
G

f(x)dx.

(4) The constant function 1 ∈ C0(G,C) with value 1 ∈ C has integral∫
G

1 dx = 1.
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Remark 11. (1) If G is compact group, then there is a unique measure µ on G
called the Haar measure such that

∫
G
f(x)dx =

∫
G
fdµ. If G is finite, then∫

G

f(x)dx =
1

|G|

∑
x∈G

f(x),

and in this case, the Haar measure is called the counting measure.

(2) In fact, parts (1)–(3) of Theorem 10 hold for every locally compact group such
as G = (R,+). Moreover, for compact G (but not for locally compact G), part (3)
can be replaced by the stronger statement that∫

G

f(xg)dx =

∫
G

f(x)dx =

∫
G

f(gx)dx

for all f ∈ C0(G,C) and g ∈ G.

Proof (of Theorem 9). We repeat the proof for G finite, replacing sum by integral.
So given any choice 〈−,−〉0 of inner product (resp. hermitian inner product) on V ,
we define 〈−,−〉 : V × V → C by

〈v1,v2〉 =

∫
G

〈π(x)(v1), π(x)(v2)〉0dx,

where we use the integral provided by Theorem 10. The linearity of the integral
implies that 〈−,−〉 is an inner product (resp. a hermitian inner product), and we
claim that it is π-invariant. Indeed, given v1,v2 ∈ V , we define f ∈ C0(G,C) by

f(x) = 〈π(x)(v1), π(x)(v2)〉0

so that 〈v1,v2〉 =
∫
G
f(x)dx. The right-invariance of the integral shows that

〈π(g)(v1), π(g)(v2)〉 =

∫
G

f(xg)dx =

∫
G

f(x)dx = 〈v1,v2〉

for all g ∈ G, as claimed. We conclude that π is orthogonal (resp. unitary), so
Proposition 4 shows that it is completely reducible. �

Remark 12. We explain the idea in the proof above, assuming that π is a real
representation. The representation π induces a representation

G
ρ

// GL(B+(V ))

on the space B+(V ) of real symmetric bilinear forms on V defined by

ρ(g)(〈−,−〉)(v1,v2) = 〈π(g−1)(v1), π(g
−1)(v2)〉.

The subset I(V ) ⊂ B+(V ) consisting of the real inner products is an open cone,
and it is preserved by ρ in the sense that ρ(I(V )) ⊂ I(V ) for all g ∈ G. Thus, given
〈−,−〉0 ∈ I(V ), we have ρ(G)(〈−,−〉0) ⊂ I(V ), which expresses that the G-orbit
through 〈−,−〉0 is fully contained in I(V ). The π-invariant inner product

〈v1,v2〉 =

∫
G

〈π(x)(v1), π(x)(v2)〉0dx

may thus be seen as an “average” over the G-orbit through 〈−,−〉0.

The second proof is to construct the π-invariant inner product 〈−,−〉 as a center
of mass. We recall the definition of the center of mass.
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Definition 13. Let W be a finite dimensional real vector space, and let µ be a
Lebesgue measure3 on W . Suppose that K ⊂ W is a Lebesgue measurable subset
with positive volume µ(K) > 0. The center of mass of K ⊂ W is the vector

c(K) =
1

µ(K)

∫
K

xdx ∈ W.

We prove three lemmas in the situation of Definition 13.

Lemma 14. If K ⊂ W is a Lebesgue measurable subset with µ(K) > 0, then

c(f(K)) = f(c(K))

for all f ∈ GL(W ).

Proof. Substituting y = f(x) and dy = det(f)dx, we find that

c(f(K)) =
1

µ(f(K))

∫
f(K)

ydy =
1

det(f)µ(K)

∫
K

x det(f)dx = c(K)

as desired. Here we use that det(f) is a scalar, independent of x ∈ K. �

We recall that if K ⊂ W is any subset, then its convex hull is defined to be the
subset conv(K) ⊂ W that consists of all linear combinations of the form

x0a0 + · · ·+ xmam ∈ W

with m ≥ 0, x0, . . . ,xm ∈ K, a0, . . . , am ∈ [0, 1], and a0 + · · · + am = 1. We say
that a linear combination of this form is a convex combination.

Lemma 15. If K ⊂ W is compact,4 then so is conv(K) ⊂ W .

Proof. Let n = dimR(W ). A classical theorem of Carathéodory states that for every
w ∈ conv(K) is a convex combination of at most n+ 1 points x0, . . . ,xn ∈ K. So
in fact, the subset conv(K) ⊂ W consists of all convex combinations

x0a0 + · · ·+ xnan ∈ W

with x0, . . . ,xn ∈ K, a0, . . . , an ∈ [0, 1], and a0 + · · · + an = 1. It follows that we
have a continuous surjection

Kn+1 ×∆n
p

// conv(K)

that to (x0, . . . ,xn, a0, . . . , an) assigns x0a0 + · · ·+ xnan. Here

∆n ⊂ [0, 1]n+1

is the subspace of tuples (a0, . . . , an) with a0 + · · · + an = 1. So conv(K) is the
image of a compact space by a continuous map, and therefore, it is compact. �

Lemma 16. If K ⊂ W is a compact subset with µ(K) > 0, then

c(K) ∈ conv(K).

3The normalization of µ is irrelevant for this definition.
4Every compact subset K ⊂ W is Lebesgue measuable.
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Proof. By the theory of (Lebesgue) integration,

c(K) = lim
r→∞

1

µ(K)

r∑
i=1

xiµ(Ki),

where K =
∐r

i=1 Ki is a decomposition of K into r disjoint Lebesgue measurable
subsets, and where xi ∈ Ki is any point. By definition, we have

1

µ(K)

r∑
i=1

xiµ(Ki) ∈ conv(K)

for all r ≥ 1. But by Lemma 15, conv(K) ⊂ W is a compact subset of a Hausdorff
space, so c(K) ∈ conv(K) as stated. �

Proof (of Theorem 9). We first suppose that (V, π) is a finite dimensional real rep-
resentation of the compact group G and show that π is orthogonal. Let B+(V ) be
the real vector space of symmetric bilinear forms on V , and let

G
ρ

// GL(B+(V ))

be the group homomorphism defined by

ρ(g)(〈−,−〉)(v1,v2) = 〈π(g−1)(v1), π(g
−1)(v2)〉.

The pair (B+(V ), ρ) is a representation of G. The subspace I(V ) ⊂ B+(V ) of inner
products is an open cone, and it is ρ-invariant in the sense that for all g ∈ G,

ρ(g)(I(V )) ⊂ I(V ).

We now choose 〈−,−〉0 ∈ I(V ) and 〈−,−〉0 ∈ K0 ⊂ I(V ), and define K ⊂ I(V ) to
be the image of the composite map

G×K0
G×i

// G×B+(V )
ρ

// B+(V ),

where i : K → B+(V ) is the canonical inclusion. Since both maps are continuous,
so is the composite map, and since G×K0 is compact, so is the image K ⊂ B+(V ).
Moreover, we have K ⊂ I(V ), because K0 ⊂ I(V ) and because I(V ) ⊂ B+(V ) is
ρ-invariant. We have µ(K) ≥ µ(K0) > 0, so the center of mass

〈−,−〉 = c(K) ∈ conv(K) ⊂ B+(V )

is defined. But K ⊂ I(V ) and I(V ) ⊂ B+(V ) is convex, being an open cone, so we
have conv(K) ⊂ I(V ), and hence,

〈−,−〉 = c(K) ∈ conv(K) ⊂ I(V )

is an inner product. By Lemma 14, it is ρ-invariant, which is equivalent to the
statement that 〈−,−〉 is a π-invariant inner product on V . In particular, (V, π) is
orthogonal, and hence, completely reducible by Proposition 4.

Finally, if instead (V, π) is a finite dimensional complex representation of G,
then we argue in the same way, but with B+(V ) replaced by the *real* vector
space H+(V ) of hermitian forms on V , and with I(V ) ⊂ B+(V ) replaced by the
open cone J(V ) ⊂ H+(V ) of hermitian inner products. �
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Appendix: Hermitian forms and hermitian inner products

Since we have already used the notions of a hermitian form and a hermitian
inner product on a complex vector space, let us recall the definition. So let V be a
(right) complex vector space. A hermitian form on V is a map

V × V C
〈−,−〉

//

such that for x,x1,x2,y,y1,y2 ∈ V and a ∈ C, the following hold:5

(H1) 〈x,y1 + y2〉 = 〈x,y1〉+ 〈x,y2〉
(H2) 〈x1 + x2,y〉 = 〈x1,y〉+ 〈x2,y〉
(H3) 〈x,y · a〉 = 〈x,y〉 · a
(H4) 〈x · a,y〉 = a · 〈x,y〉

(H5) 〈y,x〉 = 〈x,y〉

Here a ∈ C is the complex conjugate of a ∈ C. By (H5), we have in particular that
〈x,x〉 ∈ R, and a hermitian form is defined to be a hermitian inner product if, in
addition to (H1)–(H5), it has the following positivity property:

(P) 〈x,x〉 ≥ 0 and 〈x,x〉 > 0 unless x = 0.

As we have also used, the set H+(V ) of hermitian forms on V form a *real* vector
space with vector sum and scalar multiplication defined by

(〈−,−〉1 + 〈−,−〉2)(x,y) = 〈x,y〉1 + 〈x,y〉2

(〈−,−〉 · a)(x,y) = 〈x,y〉 · a.

with x,y ∈ V and a ∈ R ⊂ C. The subset J(V ) ⊂ H+(V ) is an open cone. Indeed,
while J(V ) ⊂ H+(V ) is closed under vector sum, it is only closed under scalar
multiplication by *positive* real numbers a.

Appendix: Caratheodory’s theorem

Let us prove Caratheodory’s theorem that we used in the second proof above.
So we let W be a finite dimensional real vector space, and recall that, by definition,
the convex hull of a subset K ⊂ W is the union

conv(K) =
⋃

−1≤m<∞

convm(K) ⊂ W,

where convm(K) ⊂ W is the subset of all convex combinations of m + 1 points in
W , that is, the subset of all vectors of the form

x0a0 + · · ·+ xmam

with x0, . . . ,xm ∈ K, a0, . . . , am ∈ [0, 1] and a0 + · · ·+ am = 1.

Theorem 17. Let W be a real vector space of finite dimension n, let K ⊂ W be
any subset, and let −1 ≤ d ≤ n be the dimension of the smallest affine subspace
that contains K. In this situation,

conv(K) = convd(K).

5We use the physics convention that 〈−,−〉 is linear in the second variable and conjugate linear
in the first variable. Much of the mathematical literature, including the book, uses the opposite
convention that 〈−,−〉 is linear in the first variable and conjugate linear in the second variable.
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Proof. By the definition of the convex hull, we may assume that K ⊂ W is a finite
subset. We prove the statement by induction on the cardinality N of K. If N = 0,
then K = ∅, so conv(K) = ∅ = conv−1(K), and hence, the statement holds in this
case. So we let N = r > 0 and assume that the statement has been proved for
N < r. We let K ⊂ W be a subset of cardinality r, and write K = L ∪ {x} as
the union of a subset L ⊂ W of cardinality r − 1 and a singleton. Let d and e be
the dimensions of the smallest affine subspaces that contain K and L, respectively.
Clearly, either d = e or d = e+ 1. By the inductive hypothesis, we have

conv(L) = conve(L) =
⋃

1≤i≤s

∆e
i ,

where each ∆e
i ⊂ W is an e-simplex, whose e + 1 vertices are elements of L, and

this implies that

conv(K) = conv(L ∪ {x}) =
⋃

1≤i≤s

conv(∆e
i ∪ {x}).

So it will suffice to prove that

conv(∆e
i ∪ {x}) ⊂ convd(K)

for all 1 ≤ i ≤ s. If d = e+1 or if d = e and x ∈ ∆e
i , then there is nothing to prove.

So we assume that d = e and that x /∈ ∆e
i . For every subset M ⊂ W , we have

conv(M ∪ {x}) =
⋃

u∈M

conv({u,x}),

so it suffices to show that for every u ∈ ∆e
i , the line segment

conv({u,x}) = {ua+ xb ∈ W | a, b ∈ [0, 1], a+ b = 1}

is contained in a d-simplex, whose vertices are elements of K. Since u ∈ ∆e
i , we can

write u as a convex combination

u = x0a0 + · · ·+ xeae

with a0, . . . , ae ∈ [0, 1] and a0 + · · ·+ ae = 1. Thus, every y ∈ conv({u,x}) can be
written as a convex combination

y = ua+ xb = (x0a0 + · · ·+ xeae)a+ xb

with a, b ∈ [0, 1] and a + b = 1. Since d = e and x /∈ ∆e
i , we can arrange that at

least one of the a0, . . . , ae be equal to zero. By rearranging the xi, if necessary, we
can assume that a0 = 0. But then

conv({u,x}) ⊂ conv({x1, . . . ,xe,x}),

which is an e-simplex with vertices in K as required. This proves the induction step
and the theorem. �
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