BASIC OPERATIONS ON REPRESENTATIONS

THE DUAL REPRESENTATION

We first discuss the dual vector space. To do so (and not make mistakes), we will
let k£ be any skew-field. So we do not assume a - b and b - a are equal for a,b € k.
A skew-field k = (k,+, - ) has an opposite skew-field k°P = (k, 4, *) with the same
underlying set and the same addition, but with the new multiplication

axb="0-a.

By a k-vector space, we will always mean a *right* k-vector space. So we agree that
scalars multiply from the right and not from the left. We have to do so, if we want
matrices (that represent linear maps) to multiply from the left, and I think that we
all agree that we want that. Let us recall how this works.

So let p: W — V be a linear map between right k-vector spaces, which we will
assume to be finite dimensional, and let (vq,...,v,,) and (w1,...,w,) be bases
for V and W, respectively. Every w € W and v € V can be unique written as

V=V1T1 + V22 + -+ UnTm
W =wiyy + WYz + o+ WnYn
with & = (z;) € My,1(k) and y = (y;) € M,,,1(k). Now, there is a unique matrix
A = (ai;) € My n(k)
such that for all v € V and w € W, v = p(w) if and only if £ = Ay, namely, the
matrix whose entries a;; are the unique solutions to the linear equations
o(wj;) = via1j + V2025 + -+ + Vil

with 1 < j < n. So the jth column in A is the coordinate vector of ¢(w;) with
respect to the basis (v1,va,...,v,). We say that A is the matrix that represents
p: W — V with respect to the bases (v1,...,v,,) and (w1, ..., w,).

IfU = (U,+, -) is a *left* k-vector space, then we view it as a right k°P-vector
space U = (U, +, *) with the same underlying set (of vectors) and the same vector
sum, but with the new scalar multiplication x: U x k°° — U given by

Uuxa=a-u.

We now discuss the dual vector space. So suppose that V = (V, 4+, -) is a *right*
k-vector space. Its dual is the *left* k-vector space?

V* = Homy(V, k), +, -)
with vector sum and *left* scalar multiplication given by
(f+9)(w) = f(v) +g(v)
(a-f)(v)=a-f(v).

1 The book writes V' instead of V*.



Let us check that a - f € V*. It is clear that a - f is additive, and the calculation
(a-f)v-b)=a-f(v-b)=a-(f(v)-b)=(a-f(v))-b=(a-f)(v)-b

shows that it is also preserves right multiplication by b, as required. Note that this
would not be true, if we instead let @ multiply from the right, unless a - b = b - a.
We agreed to consider this left k-vector space as the right k°P-vector space

V* = (Homg(V, k), +, %),
with the right scalar multiplication by a € k°P given by
(fra)(v) =(a- f)(v) =a- f(v) = f(v)*a.

If dimg (V) < oo, then a basis (vq,...,v,,) of the right k-vector space V gives rise
to a basis (v],...,v},) of the dual right k°P-vector space V* defined by

. 1 ifi=y
v; (v;) = e .
0 ifi#j,
which we call the dual basis.

A k-linear map ¢: W — V between right k-vector spaces V and W determine a
k°P-linear map ¢*: V* — W™ between right k°P-vector spaces defined by

¢*(f)(w) = f(p(w)).

Moreover, if V and W are finite dimensional, and if A € M,, ,,(k) is the matrix that

represents ¢: W — V with respect to bases (v1,...,v,,) and (w1,...,w,) of V
and W, respectively, then the matrix that represents the map ¢*: V* — W* with
respect to the dual bases (vq,...,v},) and (w3,...,w)) is the transpose matrix

At = (iji> S Mmm(kpp).

If V is a right k-vector space, then its double dual V** = (V*)* is also a right
k-vector space, so it is possible to compare them. There is a natural k-linear map

Vv v Vo

defined by §(v)(f) = f(v). That the map §y is natural® means that if : W — V
is any k-linear map, then the diagram

Sw

Lk

commutes. If dimy (V) < oo, then Jy is an isomorphism. Indeed, if (vy,...,vy) is

a basis of V, then (v}*,...,v}") is a basis of V**, and the calculation

i i} 1 ifi=j
Sy (vi)(v)) = vj(vi) = {0 ifi#j

shows that oy (v;) = v}™.

2VWe use the word “natural” to indicate natural transformations between functors, whereas
we use the word “canonical” to indicate some particular or preferred choice. So “natural” has a

precise mathematical meaning, whereas “canonical” does not.
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Warning 1. By contrast, there is *no* preferred way to compare V and V*. If V
is a right k-vector space, then V* is a right k°P-vector space. So to convert V* into
a right k-vector space o,(V™*), we need a ring homomorphism

k —7— k°P.
Such a ring homomorphism may not exist, and if it does, then it may not be unique.
For instance, if £ = C, then we can choose o to be the identity map, but we can

also choose o to be the map given by complex conjugation, which is different! Given
o: k — k°P, we must choose a map of right k-vector spaces

V10, (V).
The map b determines and is determined by the map

R ——_y:
defined by (x,y) = b(x)(y), and b is a well-defined and k-linear map if and only if
the map (—, —) satisfies

(S1) Forall z,y,z € V, (x,y + 2) = (x,y) + (x, 2).

(S2) Forall z,y e Vanda €k, (z,y-a) = (z,y) - a.

(S3) For all z,y,z €V, (x +y,2) = (x,2) + (y, 2).

(S4) Forall z,y e Vand a €k, (x-a,y) = (x,y) xo(a) =0c(a) - {x,y).

We say that (—,—) is a o-sesquilinear form, and we say that it is non-singular
if the map b is an isomorphism. Therefore, in order to compare V and V*, we
must both choose a ring homomorphism o: k — k°P and a o-sesquilinear form
(—,—): V xV — k. Obviously, we should never do so, if we can avoid it! Let us
also mention that if o o o = idg, then the o-sesquilinear form (—, —) is said to be
o-hermitian if, in addition, it satisfies:

(H) Forall z,y € V, (y,z) = o({(x, y)).

The requirement (H) is equivalent to the statement that the diagram

v—r o (V*
|- T
% (o (V*))*

commutes.

We now assume that k is a field. Since a-b = b - a for all a,b € k, the identity
map is a ring homomorphism idg: k — k°P. If V is a right k-vector space, then we
agree that we will *always* use the identity map o = idgx: k — k°P to view the
right k°P-vector space V* as a right k-vector. In particular, if £k = C, then we will
*not* use complex conjugation to view V* as a right C-vector space.

Definition 2. Let k be a field, and let (V, 7) be a k-linear representation of a group
G. The dual representation is the pair (V*,7*) of the dual k-vector space V* and
the group homomorphism

G~ GL(V*)
defined by 7*(g) = (g~ 1)*.



Let us check that 7* is indeed a group homomorphism. We have
m™(g-h)=a((g- W)™ =x(h g7 = (r(h)om(g™H))"
=m(g~) om(h™)" = n*(g) o n*(h)
as required. Also, if V' is finite dimensional, and if the matrix
Alg) € Mn(k)

represents w(g): V — V with respect to the basis (v1,...,v,), then the matrix
Alg™H)" = (Alg)™h)" € My (k)
represents 7*(g): V* — V* with respect to the dual basis (v},...,v}).

Ezample 3. Let (V,7) be a finite dimensional real representation of a group G. We
claim that if 7 is orthogonal, then 7* ~ 7. To see this, recall that 7 is said to be
orthogonal if there exists an inner product (—,—): V' x V' — R such that

(m(9)(2), 7(9)(y)) = (@, y)

for all g € G and ¢,y € V. Therefore, the matrix Q(g) € M, (R) that represents
m(g): V — V with respect to a basis (v, ...,v,) that is orthonormal with respect
to (—, —) is orthogonal, that is, it satisfies Q(g) = (Q(g)~!)!. So the map

[ v
defined by b(z)(y) = (x,y) is intertwining between = and 7*. Since (—, —) is an
inner product, the map b is also an isomorphism of vector spaces, so the claim

follows. We note, as in Warning 1, that the isomorphism 7 ~ 7* is not canonical,
let alone natural, but depends on the choice of inner product.

Ezample 4. If k is a field and if (V,7) is a k-linear representation of a group G,
then the map dy: V — V** is intertwining between 7 and 7** = (7*)*. Indeed,

™ (g) =7 (g7 = 7(9)™,
and the diagram

Sy
V———V*

Jﬂ(g) Jﬂ(g)**
5

commutes by the naturality of 4.

Theorem 5. Let k be a field, and let (V,7) be a finite dimensional k-linear repre-
sentation of a group G.

(1) m is irreducible if and only 7™ is so.
(2) 7 is completely reducible if and only if ™ is so.

Proof. Indeed, the sequence

p

0 U—"sv W 0

is exact (resp./ split exact) if and only if the sequence

*

p

s

0 W Ve L 5 U* 0

is exact (resp. split exact). O




Remark 6. In elementary particle physics, an elementary particle is an irreducible
representation m of the gauge group G. The corresponding antiparticle is the dual
(irreducible) representation 7*.

SUMS OF REPRESENTATIONS

We will next define (direct) sums of representations. There are two version, the
exterior sum denoted “BB” and the (interior) sum denoted “@.” First, let

Vi i e Ve eV
be a direct sum of k-vector spaces V; and V5. Given vy € V; and vy € V5, we write
v1 B vy =11(v1) +i2(v2) € VI @ Va.
If f1: W7 — Vq and fo: Wy — V5 are k-linear maps, then there is a unique k-linear

map f1 @ fo: Wy & Wy — V; & V5 that makes the diagram

Wy L Wy @ Wy 22— W,

s [pen |-

Vi— s VeV etV
commute. In terms of elements, we have

(f1 ® f2) (w1 ® wa) = fi(w1) ® fo(w2).
Moreover, if also g1: V1 — Uy and go: Vo — Us are k-linear maps, then
(91 ©g2) 0 (/1 ® f2) = (910 f1) ® (g2 0 fa).
In particular, we have a well-defined group homomorphism
GL(V}) x GL(Va) —=— GL(V; @ V&)

that to (f1, f2) assigns f1 @ fa.

Definition 7. Let (Vi,7;) and (Va,m2) be k-linear representations of two groups
G1 and G, respectively. The k-linear representation (V; @ Vs, w1 Hms) of the product
group G1 x Ga, where 71 H ms is the composite group homomorphism

T X T

G x Gy "5 GL(V;) x GL(Va) —=— GL(V; ® V&),
is called the exterior sum of (Vq,m) and (Va, ma).

Spelling out the definition in terms of elements, we have
(m B m2)(g1,92)(v1 ® v2) = mi(g1)(v1) S T2(g2)(v2)
for g1 € G1, g2 € G2, v1 € V] and vy € Vs.
For every group G, the diagonal map
A
G—=-GxG

defined by A (g) = (g, 9) is also a group homomorphism.
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Definition 8. Let (V1,7 ) and (Va,m3) be k-linear representations of the *same*
group G. The k-linear representation (V3 ®Va, w1 @ms) of G, where 7 & 7o is defined
to be the composite group homomorphism

G2 s ax a2 L e V).
is called the sum of 7; and 5.2

Again, spelling out the definition in terms of elements, we have

(m @ m2)(g)(v1 @ v2) = mi(g)(v1) ® m2(g)(v2)
for g € G, v, € Vo, and vy € V5.
Remark 9. If (Vi,m) and (Va,m2) both are k-linear representations of the same
group G, then it may seem as if there is not much difference between the represen-
tations m B 7wy and 7 @ mo. However, there is a big difference, which is that the

former is a representation of the group G x G, while the latter is a representation
of the much smaller group G.

Ezxample 10. Let (V,7) be a k-linear representation of a group G. If Uy,Us C V
are m-invariant subspaces, then the canonical inclusion maps
U1 J1 V J2 U2
are intertwining between 7y, and 7, and hence, the induced map
-
U aelU, 22y

is intertwining between 7y, @ 7y, and m. We recall that j; + jo is surjective if and
only if Uy + Uy = V and that j; + jo is injective if and only if U; N Uy = {0}. In
particular, if j; + jo is bijective, then m ~ 7y, & 7y,.

We can now restate Theorems 12 and 13 from Lecture 2 as follows:

Theorem 11. A finite dimensional k-linear representation (V,m) of a group G is
completely reducible if and only if m >~ m & -+ ® Wy, with w, ..., Ty irreducible.

Theorem 12. Let (V,7) be a k-linear representation of a group G, and suppose
that m ~ m & -+ B Wy, with 71, ..., Ty irreducible. If U C V is w-invariant, then
my 48 isomorphic to the sum of some of the m;, and Ty is isomorphic to the sum
of the remaining ;.

Lemma 13. Let (V, ) be a k-linear representation of a group G, and suppose that
Vi,..., Vin CV arem-invariant subspaces such that the representations wy,, ..., Ty,
are irreducible and pairwise non-isomorphic. In this case, the canonical map

ViV —V
is injective, so my, @ --- @ Wy, 1S a subrepresentation of m.
Proof. We argue by induction on m > 0, the case m = 0 being trivial. So we

assume that the statement has been proved for m < r and prove it for m = r. By
the inductive hypothesis, the canonical map

ie---eoVy —V

3 The book writes 71 + 7o instead of w1 @ ma.
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is injective with image V3 + -+ - + V,._1, so the kernel of the canonical map
i--oVineV, —V

is equal to (V4 + -+ -+ V,._1) N V,.. Since 7y, is irreducible, the kernel in question is
nonzero if and only if V. C V§ 4+ --- 4+ V,._;. However, by Theorem 12, this is not
possible, because my;,. % 7y, for all 1 <i <. O

We can now prove the following analogue of unique prime factorization for
semisimple representations.

Theorem 14. Let wy,...,m, and p1, ..., pn be irreducible k-linear representations
of a group G, and suppose that T & -+ DTy = p1 B -+ - B pp. In this case, m =n
and, up to a reordering, w; >~ p; for all 1 <i < m.

Proof. The proof is by induction on m > 0, the case m = 0 being trivial. So we
assume that the statement has been proved for m < r and prove it for m = r. We
choose any 0 < s < r and consider the two subrepresentations

M@ BT Top1 @ BT CT D DT, 21 B B pp.

Theorem 12 shows that w1 @- - -@m, is a sum of some of the p;, and that 751 ®- - - @,
is the sum of the remaining p;. Since we s < 7 and r — s < r, it follows from the
inductive hypothesis that, up to a reordering, m; ~ p; for 1 < ¢ < s and for
s+ 1 < ¢ < r. This proves the induction step, and hence, the theorem. O

TENSOR PRODUCTS OF REPRESENTATIONS

We finally define tensor products of representations, and again there is both an
exterior tensor product “X” and an interior tensor product “®.” First, we recall
that a tensor product of two k-vector spaces is a k-bilinear map

Pvy, vy
VixVo———m— V10,

with the property that for every k-bilinear map
Vi x Vo —25 U

there is exists a unique k-linear map b: V1 ® Vo — U that makes the diagram

Pvy,va

VixVo——Vi®V,
U

commute. We say that this property of the tensor product is its defining universal
property. In particular, we conclude that if also gy, v,: Vi x Vo = V1 ® V5 is a tensor
product of Vi and V3, then the unique k-linear maps

q ~
VieVar——Viav,
p
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are each other’s inverses. In this way, a tensor product of V7 and V5 is unique, up
to unique isomorphism, so we often abuse language and call it *the* tensor product
of Vi and Vs. Given vy € V; and v, € Vs, we write*

V1 @ V3 = Py v, (V1,02) € V1 @ Vo

We recall that if the families (e;);cr and (f);jes are bases of Vi and Va, respectively,
then the family (e; ® f; )Gij)elxJ 1s a ba51s of V1 ® V5. In particular, we have

dimg (V; ® V) = dimg (V1) - dimg (Va).

Suppose that f1: W7 — Vi and fo: Wy — V5 are two k-linear maps. It follows
from the defining universal property of the tensor product, there is a unique k-linear
map f1 ® fo: W1 @ Wy — V7 ® V5 that makes the diagram

PwWy,Wo
Wi x Wy ——W; @ Wy

Jfle'z lf1®f2
Pvy, vy

VixVo——Vi®V,

commute. Indeed, the map py, v, o (f1 X f2) is k-bilinear. By the uniqueness of this
assignment, we conclude that there is a well-defined map

GL(V}) x GL(Va) —2— GL(V; ® Va)
that to (f1, fo) assigns fi1 ® fo and that this map is a group homomorphism.

Definition 15. Let (V4,71) and (Va, m2) be k-linear representations of two groups
G1 and G, respectively. The k-linear representation (V; ® Vs, w1 Kmsy) of the product
group G1 X G, where m; X 5 is the composite group homomorphism

T X

G1 X G ——— GL(V1) x GL(V2) —2, GL(V1 ® Va),
is called the exterior tensor product of (Vi,m) and (Va, ms).?

Spelling out the definition in terms of pure tensors, we have

(m1 B 72) (g1, 92)(v1 ® v2) = m1(g1)(v1) @ T2(92)(V2),
where g1 € G1, g2 € Ga, v1 € V7, and vy € Vs.

Definition 16. Let (V1,7m) and (Va,m3) be k-linear representations of the *same*
group G. The k-linear representation (V3 ® Vi, 71 ® m2), where 71 ® o is defined
to be the composite group homomorphism

71'1&71’2

G—>G><G—>GL(V1®V2)

is called the tensor product of 7w, and 5.8

4 The tensors of the form v1 ® v2 are called pure tensors. They are the tensors that belong to
the image of the map py, v, : V1 X Vo — V1 ® Va. Every tensor can be written as a sum of pure
tensors, but it is almost never useful to do so, since the sum is not unique. A tensor that is not a
pure tensor is said to be entangled. This is the source of entanglement in quantum mechanics.

5 Confusingly, the book writes m1 ® 72 instead of w1 X 2.

6 The book writes w172 instead of m1 ® mo.



Again, spelling out the definition in terms of pure tensors, we have

(m1 ® m2)(9)(v1 ® v2) = m1(g)(v1) ® m2(g)(v2).

Ezample 17. 1) We recall that sum and tensor product satisfy a distributive law in
the sense that the canonical map

U)o UeVy) — U (Vi aVs)

is an isomorphism. So if 7: G — GL(k™) is the trivial k-linear representation of G
on V =£k", and if 7: G — GL(U) is any k-linear representation, then

TRQT=TQRk® - k)2 (rRk)D--- d(Qk)~1d - D,

where there are n summands.

2) If U and V are right k-vector spaces, then there is a natural k-linear map

V @ U* —2" s Homy,(U, V)

defined by a(v ® f)(u) = v - f(u). It is an isomorphism if at least one of U and V
is finite dimensional. That the map ayy is natural means that if ¢: Uy — U; and
¥: Vi — V5 are k-linear maps, then the diagram

Vi® Uik o Homk(Ul, Vl)
ld)@Ul* Hom (U1 ,v)
Vo @ Uf —2 Homy (U, Va)

lvz@ﬂp* Hom(y,V2)
aUz,V2
Vo @ Uy ———— Homy,(Us, V2)

commutes. In particular, if (V, ) is a k-linear represenstation of G, then

Ve vs —Y s Homy(V, V)
lw(g)@w* Hom (V.7 (g))

Ve v — s Homy(V, V)
lV®ﬂ(gl)* JHom(ﬂ(gl)J/)

VeV —2" s Homy(V, V)

commutes for all g € G. The outer diagram is

VeV —Y L Endy(V)
l(ﬂ@ﬁf*)(g) lAd(ﬂ(g))
Ve v —Y L Endy(V).
So if V' is finite dimensional, then oy is isomorphism of k-linear representations

TR ~Adom,
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where the right-hand side is the k-linear representation of G on V given by the
composite group homomorphism
G —" GL(V) 24, GL(v).

In particular, if we take G = GL(V') and 7 = id, then 7 and 7* are irreducible, but
their tensor product m ® 7* is not!

Remark 18. If m; and mo are irreducible representations, then it is an important
problem called “scattering” to determine how m; ® 7y decomposes as a sum

T Q@M >p1 DD pPm

of irreducible representations. The name “scattering” comes from physics. Indeed,
by colliding the elementary particles m; and s, one obtains the state m; @7y, which,
in turn, decays to the collection of elementary particles p1, ..., pm.
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