
BASIC OPERATIONS ON REPRESENTATIONS

The dual representation

We first discuss the dual vector space. To do so (and not make mistakes), we will
let k be any skew-field. So we do not assume a · b and b · a are equal for a, b ∈ k.
A skew-field k = (k,+, · ) has an opposite skew-field kop = (k,+, ?) with the same
underlying set and the same addition, but with the new multiplication

a ? b = b · a.
By a k-vector space, we will always mean a *right* k-vector space. So we agree that
scalars multiply from the right and not from the left. We have to do so, if we want
matrices (that represent linear maps) to multiply from the left, and I think that we
all agree that we want that. Let us recall how this works.

So let ϕ : W → V be a linear map between right k-vector spaces, which we will
assume to be finite dimensional, and let (v1, . . . ,vm) and (w1, . . . ,wn) be bases
for V and W , respectively. Every w ∈W and v ∈ V can be unique written as

v = v1x1 + v2x2 + · · ·+ vmxm

w = w1y1 + w2y2 + · · ·+ wnyn

with x = (xj) ∈Mm,1(k) and y = (yi) ∈Mn,1(k). Now, there is a unique matrix

A = (aij) ∈Mm,n(k)

such that for all v ∈ V and w ∈ W , v = ϕ(w) if and only if x = Ay, namely, the
matrix whose entries aij are the unique solutions to the linear equations

ϕ(wj) = v1a1j + v2a2j + · · ·+ vmamj

with 1 ≤ j ≤ n. So the jth column in A is the coordinate vector of ϕ(wj) with
respect to the basis (v1,v2, . . . ,vn). We say that A is the matrix that represents
ϕ : W → V with respect to the bases (v1, . . . ,vm) and (w1, . . . ,wn).

If U = (U,+, · ) is a *left* k-vector space, then we view it as a right kop-vector
space U = (U,+, ?) with the same underlying set (of vectors) and the same vector
sum, but with the new scalar multiplication ? : U × kop → U given by

u ? a = a · u.
We now discuss the dual vector space. So suppose that V = (V,+, · ) is a *right*
k-vector space. Its dual is the *left* k-vector space1

V ∗ = (Homk(V, k),+, · )
with vector sum and *left* scalar multiplication given by

(f + g)(v) = f(v) + g(v)

(a · f)(v) = a · f(v).

1The book writes V ′ instead of V ∗.
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Let us check that a · f ∈ V ∗. It is clear that a · f is additive, and the calculation

(a · f)(v · b) = a · f(v · b) = a · (f(v) · b) = (a · f(v)) · b = (a · f)(v) · b.

shows that it is also preserves right multiplication by b, as required. Note that this
would not be true, if we instead let a multiply from the right, unless a · b = b · a.
We agreed to consider this left k-vector space as the right kop-vector space

V ∗ = (Homk(V, k),+, ?),

with the right scalar multiplication by a ∈ kop given by

(f ? a)(v) = (a · f)(v) = a · f(v) = f(v) ? a.

If dimk(V ) <∞, then a basis (v1, . . . ,vm) of the right k-vector space V gives rise
to a basis (v∗1, . . . ,v

∗
m) of the dual right kop-vector space V ∗ defined by

v∗i (vj) =

{
1 if i = j

0 if i 6= j,

which we call the dual basis.

A k-linear map ϕ : W → V between right k-vector spaces V and W determine a
kop-linear map ϕ∗ : V ∗ →W ∗ between right kop-vector spaces defined by

ϕ∗(f)(w) = f(ϕ(w)).

Moreover, if V and W are finite dimensional, and if A ∈Mm,n(k) is the matrix that
represents ϕ : W → V with respect to bases (v1, . . . ,vm) and (w1, . . . ,wn) of V
and W , respectively, then the matrix that represents the map ϕ∗ : V ∗ → W ∗ with
respect to the dual bases (v1, . . . ,v

∗
m) and (w∗1, . . . ,w

∗
n) is the transpose matrix

At = (aji) ∈Mn,m(kop).

If V is a right k-vector space, then its double dual V ∗∗ = (V ∗)∗ is also a right
k-vector space, so it is possible to compare them. There is a natural k-linear map

V
δV // V ∗∗

defined by δ(v)(f) = f(v). That the map δV is natural2 means that if ϕ : W → V
is any k-linear map, then the diagram

W W ∗∗

V V ∗∗

δW //

ϕ

��

ϕ∗∗

��δV //

commutes. If dimk(V ) < ∞, then δV is an isomorphism. Indeed, if (v1, . . . ,vm) is
a basis of V , then (v∗∗1 , . . . ,v

∗∗
m ) is a basis of V ∗∗, and the calculation

δV (vi)(v
∗
j ) = v∗j (vi) =

{
1 if i = j

0 if i 6= j

shows that δV (vi) = v∗∗i .

2We use the word “natural” to indicate natural transformations between functors, whereas
we use the word “canonical” to indicate some particular or preferred choice. So “natural” has a

precise mathematical meaning, whereas “canonical” does not.
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Warning 1. By contrast, there is *no* preferred way to compare V and V ∗. If V
is a right k-vector space, then V ∗ is a right kop-vector space. So to convert V ∗ into
a right k-vector space σ∗(V

∗), we need a ring homomorphism

k
σ // kop.

Such a ring homomorphism may not exist, and if it does, then it may not be unique.
For instance, if k = C, then we can choose σ to be the identity map, but we can
also choose σ to be the map given by complex conjugation, which is different! Given
σ : k → kop, we must choose a map of right k-vector spaces

V
b // σ∗(V

∗).

The map b determines and is determined by the map

V × V k
〈−,−〉

//

defined by 〈x,y〉 = b(x)(y), and b is a well-defined and k-linear map if and only if
the map 〈−,−〉 satisfies

(S1) For all x,y, z ∈ V , 〈x,y + z〉 = 〈x,y〉+ 〈x, z〉.
(S2) For all x,y ∈ V and a ∈ k, 〈x,y · a〉 = 〈x,y〉 · a.
(S3) For all x,y, z ∈ V , 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉.
(S4) For all x,y ∈ V and a ∈ k, 〈x · a,y〉 = 〈x,y〉 ? σ(a) = σ(a) · 〈x,y〉.

We say that 〈−,−〉 is a σ-sesquilinear form, and we say that it is non-singular
if the map b is an isomorphism. Therefore, in order to compare V and V ∗, we
must both choose a ring homomorphism σ : k → kop and a σ-sesquilinear form
〈−,−〉 : V × V → k. Obviously, we should never do so, if we can avoid it! Let us
also mention that if σ ◦ σ = idk, then the σ-sesquilinear form 〈−,−〉 is said to be
σ-hermitian if, in addition, it satisfies:

(H) For all x,y ∈ V , 〈y,x〉 = σ(〈x,y〉).

The requirement (H) is equivalent to the statement that the diagram

V
b //

δV

��

σ∗(V
∗)

V ∗∗ σ∗((σ∗(V
∗))∗)

σ∗(b∗)

OO

commutes.

We now assume that k is a field. Since a · b = b · a for all a, b ∈ k, the identity
map is a ring homomorphism idk : k → kop. If V is a right k-vector space, then we
agree that we will *always* use the identity map σ = idk : k → kop to view the
right kop-vector space V ∗ as a right k-vector. In particular, if k = C, then we will
*not* use complex conjugation to view V ∗ as a right C-vector space.

Definition 2. Let k be a field, and let (V, π) be a k-linear representation of a group
G. The dual representation is the pair (V ∗, π∗) of the dual k-vector space V ∗ and
the group homomorphism

G
π∗
// GL(V ∗)

defined by π∗(g) = π(g−1)∗.
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Let us check that π∗ is indeed a group homomorphism. We have

π∗(g · h) = π((g · h)−1)∗ = π(h−1 · g−1)∗ = (π(h−1) ◦ π(g−1))∗

= π(g−1)∗ ◦ π(h−1)∗ = π∗(g) ◦ π∗(h)

as required. Also, if V is finite dimensional, and if the matrix

A(g) ∈Mn(k)

represents π(g) : V → V with respect to the basis (v1, . . . ,vn), then the matrix

A(g−1)t = (A(g)−1)t ∈Mn(k)

represents π∗(g) : V ∗ → V ∗ with respect to the dual basis (v∗1, . . . ,v
∗
n).

Example 3. Let (V, π) be a finite dimensional real representation of a group G. We
claim that if π is orthogonal, then π∗ ' π. To see this, recall that π is said to be
orthogonal if there exists an inner product 〈−,−〉 : V × V → R such that

〈π(g)(x), π(g)(y)〉 = 〈x,y〉
for all g ∈ G and x,y ∈ V . Therefore, the matrix Q(g) ∈ Mn(R) that represents
π(g) : V → V with respect to a basis (v1, . . . ,vn) that is orthonormal with respect
to 〈−,−〉 is orthogonal, that is, it satisfies Q(g) = (Q(g)−1)t. So the map

V
b // V ∗

defined by b(x)(y) = 〈x,y〉 is intertwining between π and π∗. Since 〈−,−〉 is an
inner product, the map b is also an isomorphism of vector spaces, so the claim
follows. We note, as in Warning 1, that the isomorphism π ' π∗ is not canonical,
let alone natural, but depends on the choice of inner product.

Example 4. If k is a field and if (V, π) is a k-linear representation of a group G,
then the map δV : V → V ∗∗ is intertwining between π and π∗∗ = (π∗)∗. Indeed,

π∗∗(g) = π∗(g−1)∗ = π(g)∗∗,

and the diagram

V V ∗∗

V V ∗∗

δV //

π(g)

��

π(g)∗∗

��δV //

commutes by the naturality of δ.

Theorem 5. Let k be a field, and let (V, π) be a finite dimensional k-linear repre-
sentation of a group G.

(1) π is irreducible if and only π∗ is so.
(2) π is completely reducible if and only if π∗ is so.

Proof. Indeed, the sequence

0 // U
i // V

p
// W // 0

is exact (resp./ split exact) if and only if the sequence

0 // W ∗
p∗
// V ∗

i∗ // U∗ // 0

is exact (resp. split exact). �
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Remark 6. In elementary particle physics, an elementary particle is an irreducible
representation π of the gauge group G. The corresponding antiparticle is the dual
(irreducible) representation π∗.

Sums of representations

We will next define (direct) sums of representations. There are two version, the
exterior sum denoted “�” and the (interior) sum denoted “⊕.” First, let

V1
i1 // V1 ⊕ V2 V2

i2oo

be a direct sum of k-vector spaces V1 and V2. Given v1 ∈ V1 and v2 ∈ V2, we write

v1 ⊕ v2 = i1(v1) + i2(v2) ∈ V1 ⊕ V2.

If f1 : W1 → V1 and f2 : W2 → V2 are k-linear maps, then there is a unique k-linear
map f1 ⊕ f2 : W1 ⊕W2 → V1 ⊕ V2 that makes the diagram

W1
j1 //

f1

��

W1 ⊕W2

f1⊕f2
��

W2
j2oo

f2

��

V1
i1 // V1 ⊕ V2 V2

i2oo

commute. In terms of elements, we have

(f1 ⊕ f2)(w1 ⊕w2) = f1(w1)⊕ f2(w2).

Moreover, if also g1 : V1 → U1 and g2 : V2 → U2 are k-linear maps, then

(g1 ⊕ g2) ◦ (f1 ⊕ f2) = (g1 ◦ f1)⊕ (g2 ◦ f2).

In particular, we have a well-defined group homomorphism

GL(V1)×GL(V2)
⊕
// GL(V1 ⊕ V2)

that to (f1, f2) assigns f1 ⊕ f2.

Definition 7. Let (V1, π1) and (V2, π2) be k-linear representations of two groups
G1 and G2, respectively. The k-linear representation (V1⊕V2, π1�π2) of the product
group G1 ×G2, where π1 � π2 is the composite group homomorphism

G1 ×G2 GL(V1)×GL(V2) GL(V1 ⊕ V2),
π1×π2 //

⊕
//

is called the exterior sum of (V1, π1) and (V2, π2).

Spelling out the definition in terms of elements, we have

(π1 � π2)(g1, g2)(v1 ⊕ v2) = π1(g1)(v1)⊕ π2(g2)(v2)

for g1 ∈ G1, g2 ∈ G2, v1 ∈ V1 and v2 ∈ V2.

For every group G, the diagonal map

G G×G
∆G //

defined by ∆G(g) = (g, g) is also a group homomorphism.
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Definition 8. Let (V1, π1) and (V2, π2) be k-linear representations of the *same*
group G. The k-linear representation (V1⊕V2, π1⊕π2) of G, where π1⊕π2 is defined
to be the composite group homomorphism

G G×G GL(V1 ⊕ V2).
∆G //

π1�π2 //

is called the sum of π1 and π2.3

Again, spelling out the definition in terms of elements, we have

(π1 ⊕ π2)(g)(v1 ⊕ v2) = π1(g)(v1)⊕ π2(g)(v2)

for g ∈ G, v1 ∈ V2, and v2 ∈ V2.

Remark 9. If (V1, π1) and (V2, π2) both are k-linear representations of the same
group G, then it may seem as if there is not much difference between the represen-
tations π1 � π2 and π1 ⊕ π2. However, there is a big difference, which is that the
former is a representation of the group G×G, while the latter is a representation
of the much smaller group G.

Example 10. Let (V, π) be a k-linear representation of a group G. If U1, U2 ⊂ V
are π-invariant subspaces, then the canonical inclusion maps

U1
j1 // V U2

j2oo

are intertwining between πUi
and π, and hence, the induced map

U1 ⊕ U2 V
j1+j2 //

is intertwining between πU1
⊕ πU2

and π. We recall that j1 + j2 is surjective if and
only if U1 + U2 = V and that j1 + j2 is injective if and only if U1 ∩ U2 = {0}. In
particular, if j1 + j2 is bijective, then π ' πU1 ⊕ πU2 .

We can now restate Theorems 12 and 13 from Lecture 2 as follows:

Theorem 11. A finite dimensional k-linear representation (V, π) of a group G is
completely reducible if and only if π ' π1 ⊕ · · · ⊕ πm with π1, . . . , πm irreducible.

Theorem 12. Let (V, π) be a k-linear representation of a group G, and suppose
that π ' π1 ⊕ · · · ⊕ πm with π1, . . . , πm irreducible. If U ⊂ V is π-invariant, then
πU is isomorphic to the sum of some of the πi, and πV/U is isomorphic to the sum
of the remaining πi.

Lemma 13. Let (V, π) be a k-linear representation of a group G, and suppose that
V1, . . . , Vm ⊂ V are π-invariant subspaces such that the representations πV1

, . . . , πVm

are irreducible and pairwise non-isomorphic. In this case, the canonical map

V1 ⊕ · · · ⊕ Vm // V

is injective, so πV1
⊕ · · · ⊕ πVm

is a subrepresentation of π.

Proof. We argue by induction on m ≥ 0, the case m = 0 being trivial. So we
assume that the statement has been proved for m < r and prove it for m = r. By
the inductive hypothesis, the canonical map

V1 ⊕ · · · ⊕ Vr−1
// V

3The book writes π1 + π2 instead of π1 ⊕ π2.
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is injective with image V1 + · · ·+ Vr−1, so the kernel of the canonical map

V1 ⊕ · · · ⊕ Vr−1 ⊕ Vr // V

is equal to (V1 + · · ·+ Vr−1) ∩ Vr. Since πVr
is irreducible, the kernel in question is

nonzero if and only if Vr ⊂ V1 + · · · + Vr−1. However, by Theorem 12, this is not
possible, because πVr

6' πVi
for all 1 ≤ i < r. �

We can now prove the following analogue of unique prime factorization for
semisimple representations.

Theorem 14. Let π1, . . . , πm and ρ1, . . . , ρn be irreducible k-linear representations
of a group G, and suppose that π1 ⊕ · · · ⊕ πm ' ρ1 ⊕ · · · ⊕ ρn. In this case, m = n
and, up to a reordering, πi ' ρi for all 1 ≤ i ≤ m.

Proof. The proof is by induction on m ≥ 0, the case m = 0 being trivial. So we
assume that the statement has been proved for m < r and prove it for m = r. We
choose any 0 < s < r and consider the two subrepresentations

π1 ⊕ · · · ⊕ πs, πs+1 ⊕ · · · ⊕ πr ⊂ π1 ⊕ · · · ⊕ πr ' ρ1 ⊕ · · · ⊕ ρn.

Theorem 12 shows that π1⊕· · ·⊕πs is a sum of some of the ρi, and that πs+1⊕· · ·⊕πr
is the sum of the remaining ρi. Since we s < r and r − s < r, it follows from the
inductive hypothesis that, up to a reordering, πi ' ρi for 1 ≤ i ≤ s and for
s+ 1 ≤ i ≤ r. This proves the induction step, and hence, the theorem. �

Tensor products of representations

We finally define tensor products of representations, and again there is both an
exterior tensor product “�” and an interior tensor product “⊗.” First, we recall
that a tensor product of two k-vector spaces is a k-bilinear map

V1 × V2 V1 ⊗ V2

pV1,V2 //

with the property that for every k-bilinear map

V1 × V2
b // U

there is exists a unique k-linear map b̂ : V1 ⊗ V2 → U that makes the diagram

V1 × V2 V1 ⊗ V2

U

pV1,V2 //

b

  
b̂

~~

commute. We say that this property of the tensor product is its defining universal
property. In particular, we conclude that if also qV1,V2

: V1×V2 → V1 ⊗̃V2 is a tensor
product of V1 and V2, then the unique k-linear maps

V1 ⊗ V2 V1 ⊗̃V2

q̂
//

p̂
oo
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are each other’s inverses. In this way, a tensor product of V1 and V2 is unique, up
to unique isomorphism, so we often abuse language and call it *the* tensor product
of V1 and V2. Given v1 ∈ V1 and v2 ∈ V2, we write4

v1 ⊗ v2 = pV1,V2
(v1,v2) ∈ V1 ⊗ V2.

We recall that if the families (ei)i∈I and (f j)j∈J are bases of V1 and V2, respectively,
then the family (ei ⊗ f j)(i,j)∈I×J is a basis of V1 ⊗ V2. In particular, we have

dimk(V1 ⊗ V2) = dimk(V1) · dimk(V2).

Suppose that f1 : W1 → V1 and f2 : W2 → V2 are two k-linear maps. It follows
from the defining universal property of the tensor product, there is a unique k-linear
map f1 ⊗ f2 : W1 ⊗W2 → V1 ⊗ V2 that makes the diagram

W1 ×W2 W1 ⊗W2

V1 × V2 V1 ⊗ V2

pW1,W2 //

f1×f2
��

f1⊗f2
��pV1,V2 //

commute. Indeed, the map pV1,V2
◦ (f1× f2) is k-bilinear. By the uniqueness of this

assignment, we conclude that there is a well-defined map

GL(V1)×GL(V2)
⊗
// GL(V1 ⊗ V2)

that to (f1, f2) assigns f1 ⊗ f2 and that this map is a group homomorphism.

Definition 15. Let (V1, π1) and (V2, π2) be k-linear representations of two groups
G1 and G2, respectively. The k-linear representation (V1⊗V2, π1�π2) of the product
group G1 ×G2, where π1 � π2 is the composite group homomorphism

G1 ×G2 GL(V1)×GL(V2) GL(V1 ⊗ V2),
π1×π2 //

⊗
//

is called the exterior tensor product of (V1, π1) and (V2, π2).5

Spelling out the definition in terms of pure tensors, we have

(π1 � π2)(g1, g2)(v1 ⊗ v2) = π1(g1)(v1)⊗ π2(g2)(v2),

where g1 ∈ G1, g2 ∈ G2, v1 ∈ V1, and v2 ∈ V2.

Definition 16. Let (V1, π1) and (V2, π2) be k-linear representations of the *same*
group G. The k-linear representation (V1 ⊗ V2, π1 ⊗ π2), where π1 ⊗ π2 is defined
to be the composite group homomorphism

G G×G GL(V1 ⊗ V2).
∆G //

π1�π2 //

is called the tensor product of π1 and π2.6

4The tensors of the form v1 ⊗ v2 are called pure tensors. They are the tensors that belong to

the image of the map pV1,V2 : V1 × V2 → V1 ⊗ V2. Every tensor can be written as a sum of pure
tensors, but it is almost never useful to do so, since the sum is not unique. A tensor that is not a

pure tensor is said to be entangled. This is the source of entanglement in quantum mechanics.
5Confusingly, the book writes π1 ⊗ π2 instead of π1 � π2.
6The book writes π1π2 instead of π1 ⊗ π2.
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Again, spelling out the definition in terms of pure tensors, we have

(π1 ⊗ π2)(g)(v1 ⊗ v2) = π1(g)(v1)⊗ π2(g)(v2).

Example 17. 1) We recall that sum and tensor product satisfy a distributive law in
the sense that the canonical map

(U ⊗ V1)⊕ (U ⊗ V2) // U ⊗ (V1 ⊕ V2)

is an isomorphism. So if τ : G→ GL(kn) is the trivial k-linear representation of G
on V = kn, and if π : G→ GL(U) is any k-linear representation, then

π ⊗ τ ' π ⊗ (k ⊕ · · · ⊕ k) ' (π ⊗ k)⊕ · · · ⊕ (π ⊗ k) ' π ⊕ · · · ⊕ π,

where there are n summands.

2) If U and V are right k-vector spaces, then there is a natural k-linear map

V ⊗ U∗ Homk(U, V )
αU,V

//

defined by α(v ⊗ f)(u) = v · f(u). It is an isomorphism if at least one of U and V
is finite dimensional. That the map αU,V is natural means that if ϕ : U2 → U1 and
ψ : V1 → V2 are k-linear maps, then the diagram

V1 ⊗ U∗1 Homk(U1, V1)

V2 ⊗ U∗1 Homk(U1, V2)

V2 ⊗ U∗2 Homk(U2, V2)

αU1,V1 //

αU1,V2 //

αU2,V2 //

ψ⊗U∗
1

��

Hom(U1,ψ)

��

V2⊗ϕ∗

��

Hom(ϕ,V2)

��

commutes. In particular, if (V, π) is a k-linear represenstation of G, then

V ⊗ V ∗ Homk(V, V )

V ⊗ V ∗ Homk(V, V )

V ⊗ V ∗ Homk(V, V )

αV,V
//

αV,V
//

αV,V
//

π(g)⊗V ∗

��

Hom(V,π(g))

��

V⊗π(g−1)∗

��

Hom(π(g−1),V )

��

commutes for all g ∈ G. The outer diagram is

V ⊗ V ∗ Endk(V )

V ⊗ V ∗ Endk(V ).

αV,V
//

αV,V
//

(π⊗π∗)(g)

��

Ad(π(g))

��

So if V is finite dimensional, then αV,V is isomorphism of k-linear representations

π ⊗ π∗ ' Ad ◦π,
9



where the right-hand side is the k-linear representation of G on V given by the
composite group homomorphism

G
π // GL(V )

Ad // GL(V ).

In particular, if we take G = GL(V ) and π = id, then π and π∗ are irreducible, but
their tensor product π ⊗ π∗ is not!

Remark 18. If π1 and π2 are irreducible representations, then it is an important
problem called “scattering” to determine how π1 ⊗ π2 decomposes as a sum

π1 ⊗ π2 ' ρ1 ⊕ · · · ⊕ ρm
of irreducible representations. The name “scattering” comes from physics. Indeed,
by colliding the elementary particles π1 and π2, one obtains the state π1⊗π2, which,
in turn, decays to the collection of elementary particles ρ1, . . . , ρm.

10


