
SCHUR’S LEMMA AND ITS APPLICATIONS

Schur’s lemma

Let (V1, π1) and (V2, π2) be k-linear representations of a group G and recall that
a k-linear map f : V1 → V2 is intertwining between π1 and π2 if the diagram

V1
f
//

π1(g)

��

V2

π2(g)

��

V1
f
// V2

commutes for all g ∈ G. We will write

Hom(π1, π2) ⊂ Homk(V1, V2)

for the subspace of intertwining k-linear maps.

Theorem 1 (Schur’s lemma). Let (V1, π1) and (V2, π2) be two irreducible k-linear
representations of a group G. A k-linear map f : V1 → V2 that is intertwining
between π1 and π2 is either an isomorphism or the zero map.

Proof. It follows immediately from the fact that f : V1 → V2 is intertwining between
π1 and π2, that ker(f) ⊂ V1 is π1-invariant and that im(f) ⊂ V2 is π2-invariant.
Therefore, since π1 was assumed to irreducible, either ker(f) = {0} or ker(f) = V1,
and since π2 was assumed to be irreducible, either im(f) = {0} or im(f) = V2. �

Theorem 2. Suppose that ((Vs, πs))s∈S is a finite family of pairwise non-isomorphic
irreducible k-linear representations of a group G, and that U ⊂

⊕
s∈S Vs is a⊕

s∈S πs-invariant subspace. There exists a (unique) subset T ⊂ S such that

U =
⊕

t∈T Vt ⊂
⊕

s∈S Vs.

Proof. Let V =
⊕

s∈S Vs, let π =
⊕

s∈S πs, and let is : Vs → V be the canonical
inclusion, which is intertwining between πs and π. Theorem 12 in Lecture 4 shows
that U ⊂ V is the image of *some* injective k-linear map

⊕
t∈T Vt

f
// V

that is intertwining between
⊕

t∈T πt and π, and we wish to show that the map

⊕
t∈T Vt V

i=
∑

t∈T it
//
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will do. Let ps : V → Vs be the unique map such that ps ◦ it : Vt → Vs is the identity
map of Vs if s = t and the zero map if s 6= t. We consider the composite maps⊕

u∈T Vu
f
// V

ps

��

Vt

it

OO

fs,t
// Vs

for s ∈ S and t ∈ T . Theorem 1 shows that fs,t is zero if s 6= t, so the diagram⊕
t∈T Vt

V⊕
t∈T Vt

f

&&⊕
t∈T ft,t

��

i

88

commutes. Moreover, the maps ft,t cannot be zero, since the top slanted map is
injective, so Theorem 1 shows that the ft,t all are isomorphisms, and hence, the
left-hand vertical map is an isomorphism. In particular,

U = im(f) = im(i),

as we wanted to prove. �

If (V, π) is an irreducible k-linear representation of G, then Schur’s lemma shows,
in particular, that the endomorphism ring

End(π) ⊂ Endk(V )

is a division algebra D over k. In general, every finite dimensional division algebra
over k occurs as End(π) for a finite dimensional irreducible k-linear representation
of some group G.1 We now make the very simplifying assumption that

k = k̄

is an algebraically closed field, so that, up to unique isomorphism, the only finite
dimensional division algebra over k is D = k. In this case, Schur’s lemma implies
the following result, which is also known as Schur’s lemma.

Theorem 3. Let k be an algebraically closed field. If (V, π) is a finite dimensional
irreducible k-linear representation of a group G, then the map

k
η
// End(π)

defined by η(λ) = λ · idV is a ring isomorphism.

Proof. The map η is injective, because V is nonzero, and to prove that it surjective,
we let f : V → V be a k-linear map that is intertwining with respect to π. Since k is
algebraically closed, the map f has an eigenvalue λ ∈ k, and since f is intertwining
with respect to π, the eigenspace

{0} 6= Vλ ⊂ V
is a π-invariant subspace. Since π is irreducible, we conclude that Vλ = V , or
equivalently, that f = λ · idV , which shows that η is surjective. �

1 If D finite dimensional real division algebra, then D ' R, C, or H.
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Corollary 4. Let (V1, π1) and (V2, π2) be isomorphic finite dimensional irreducible
k-linear representations of a group G. If k is algebraically closed, then

dimk Hom(π1, π2) = 1.

Proof. We choose any k-linear isomorphism h : V1 → V2 that intertwines between
π1 and π2. (Such an h exists by assumption.) Now, if f : V1 → V2 is any k-linear
map that intertwines between π1 and π2, then f ◦ h−1 : V2 → V2 is intertwining
with respect to π2. Hence, by Theorem 3, f ◦ h−1 = λ · idV2

for a unique λ ∈ k, so
we find that f = λ · h. �

Remark 5. More precisely, Corollary 4 shows that the composition maps

Hom(π1, π2)× End(π1) Hom(π1, π2)

End(π2)×Hom(π1, π2) Hom(π1, π2)

◦ //
◦ //

simultaneously make Hom(π1, π2) a free right End(π1)-module of rank 1 and a free
left End(π2)-module of rank 1. However, neither module has a preferred generator:
There is no preferred way to compare π1 and π2.

In Theorem 2, we considered a finite sum of pairwise non-isomorphic irreducible
representations. In the next result, we will consider the opposite situation of a finite
sum of irreducible representations, all of which are isomorphic.

Theorem 6. Let k be an algebraically closed field, and let (U, τ) and (V, π) be finite
dimensional k-linear representations of a group G such that τ is trivial and π is
irreducible. Given a π⊗τ -invariant subspace W ⊂ V ⊗U with (π⊗τ)W irreducible,
there exists (a non-unique) vector u ∈ U such that the map

V
iu // V ⊗ U

defined by iu(v) = v ⊗ u is an isomorphism from V onto W and is intertwining
between π and (π ⊗ τ)W .

Proof. The map iu is clearly k-linear and intertwining between π and π⊗ τ , so we
must show that u ∈ U can be chosen such that W = iu(V ) ⊂ V ⊗ U . We have
seen earlier that every irreducible subrepresentations of π ⊗ τ is isomorphic to π.
In particular, we may choose a k-linear isomorphism h : W → V that intertwines
between (π ⊗ τ)W and π. Now, for every f ∈ U∗, we let

V ⊗ U
cf
// V

to be the unique k-linear map such that cf (v⊗u) = v ·f(u). It intertwines between
π ⊗ τ and π, and since k is algebraically closed, Corollary 4 shows that

cf |W = λ(f) · h

for a unique λ(f) ∈ k. The map

U∗
λ // k

that to f assigns λ(f) is k-linear, so λ ∈ U∗∗. But the map

U
η
// U∗∗
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is an isomorphism, since U is finite dimensional, so λ = η(u) for a unique u ∈ U .
We claim that for this u ∈ U , we have iu(V ) = W ⊂ V ⊗ U . To prove this, we
choose a basis (v1, . . . ,vn) of V and write w ∈W as

w =
∑

1≤i≤n vi ⊗ ui

with ui ∈ U . (This way of writing w is unique, but we will not need this fact.)
Now, for every f ∈ U∗, we have∑

1≤i≤n vif(ui) = cf (w) = λ(f) · h(w) = f(u) · h(w).

Therefore, if f(u) = 0, then f(ui) = 0 for all 1 ≤ i ≤ n, and hence,

ui ∈ spank(u) ⊂ U.
This shows that {0} 6= W ⊂ iu(V ) ⊂ V ⊗ U , and since iu(V ) ' V is irreducible,
we conclude that W = iu(V ) as stated. Note that the vector u ∈ U depends on the
choice of the isomorphism h : W → V . �

Abelian groups

We will next show that if k is algebraically closed, then every finite dimensional
k-linear irreducible representation of an abelian group is 1-dimensional. We have
seen that the representation of the group (R,+) on R2 by rotation is irreducible,
so the assumption that k be algebraically closed is necessary.

Theorem 7. Let k be an algebraically closed field. If (V, π) is a finite dimensional
irreducible k-linear representation of an abelian group A, then

dimk(V ) = 1.

Proof. Since A is abelian, we have

π(g) ◦ π(h) = π(g · h) = π(h · g) = π(h) ◦ π(g)

for all g, h ∈ A. Hence, for all g ∈ A, the k-linear map

V
π(g)
// V

is intertwining with respect to π, so by Schur’s lemma, we have

π(g) = λ · idV
for some λ = λ(g) ∈ k. But this implies that every subspace W ⊂ V is π-invariant,
and since V is irreducible, this shows that dimk(V ) = 1. �

We recall that the abelianization of a group G is a group homomorphism

G
p
// Gab

with the property that for every group homomorphism f : G→ A with A abelian,
there exists a unique group homomorphism fab : Gab → A such that f = fab ◦ p.
This property characterizes the abelianization p : G→ Gab uniquely, up to unique
isomorphism under G. The group homomorphism p is surjective, and its kernel is
the commutator subgroup [G,G] ⊂ G. In particular, any 1-dimensional k-linear
representation π : G → GL(V ) of a group G determines and is determined by the
1-dimensional k-linear representation πab : Gab → GL(V ) of Gab. Moreover, if k
is algebraically closed, then a finite dimensional k-linear representation of Gab is
1-dimensional if and only if it is irreducible.
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Example 8. The abelianization of the symmetric group Σn is the signature

Σn
sgn
// {±1}.

Therefore, up to non-canonical isomorphism, the only 1-dimensional representations
of Σn over an algebraically closed field k are the trivial representation and the sign
representation.

Exterior tensor product

We have seen that tensor products of irreducible k-linear representations are
typically not irreducible, even if k is algebraically closed. We now show that the
exterior tensor product of irreducible k-linear representations is always irreducible.

Theorem 9. Let k be an algebraically closed field. If both π1 : G1 → GL(V1) and
π2 : G2 → GL(V2) are finite dimensional irreducible k-linear representations, then
so is their exterior tensor product

G1 ×G2 GL(V1 ⊗ V2).
π1�π2 //

Proof. We let {0} 6= W ⊂ V1 ⊗ V2 be a π1 � π2-invariant subspace and must show
that W = V1 ⊗ V2. We note that

(π1 � π2)(g1, e) = (π1 ⊗ τ)(g1)

(π1 � π2)(e, g2) = (τ ⊗ π2)(g2),

so W ⊂ V1 ⊗ V2 is both a π1 ⊗ τ -invariant subspace of the k-linear representation
π1⊗τ of G1×{e} ⊂ G1×G2 and a τ⊗π2-invariant subspace of the k-representation
τ ⊗ π2 of {e} × G2 ⊂ G1 × G2. Hence, by Theorem 6, there exists U2 ⊂ V2 and
U1 ⊂ V1 such that both the (injective) maps induced by the canonical inclusions

V1 ⊗ U2
// V1 ⊗ V2 U1 ⊗ V2

oo

have image W . So the square diagram of inclusions

U1 ⊗ U2
//

��

V1 ⊗ U2

��

V1 ⊗ U2
// W

is cocartesian, and the right-hand vertical map and the lower horizontal are both
isomorphisms. This implies (by the five-lemma) that

(V1/U1)⊗ U2 ' {0} ' U1 ⊗ (V2/U2),

which, in turn, implies that U1 = V1 and U2 = V2. So W = V1 ⊗ V2 as desired. �

Example 10. We show that, in Theorem 9, the assumption that k be algebraically
closed is necessary. The representation π : G = (R,+)→ GL(R2) defined by

π(t)

(
x1

x2

)
=

(
cos t − sin t
sin t cos t

)(
x1

x2

)
is irreducible, but we claim that π�π is not. Indeed, if π�π were irreducible, then
also (π�π)C would either be irreducible or a sum of two irreducible representations.
But this contradicts Theorem 7, since G×G is abelian and

dimC((π � π)C) = dimR(π � π) = 4.
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Let k be a field, and let G be a group. We recall that k[G] is k-vector space of
all functions f : G→ k and that

G GL(k[G])
L,R

//

are the left and right regular k-linear representations defined by

L(g)(f)(h) = f(g−1h)

R(g)(f)(h) = f(hg).

Since the maps R(g1) and L(g2) commute, we obtain a representation

G×G GL(k[G])
Reg

//

defined by Reg(g1, g2) = L(g2) ◦R(g1) = R(g1) ◦L(g2). We call this representation
the two-sided regular representation. Spelling out the definition, we have

Reg(g1, g2)(f)(h) = f(g−1
2 hg1).

Given any k-linear representation

G
π // GL(V ),

the k-linear map

V ⊗ V ∗
µ
// k[G]

defined by µ(x⊗ f)(h) = f(π(h)(x)) is intertwining between π � π∗ and Reg. We
define the space of matrix coefficients (or matrix elements) of π to be its image

M(π) = µ(V ⊗ V ∗) ⊂ k[G].

The reason for this name is as follows. Suppose that V is finite dimensional. If we
let (v1, . . . ,vn) be a basis of V , let (v∗1, . . . ,v

∗
n) be the dual basis of V ∗, and let

A(h) = (aij(h)) ∈Mn(k)

be the matrix that represents π(h) with respect to (v1, . . . ,vn), then

aij(h) = µ(vj ⊗ v∗i )(h).

This shows that that space of matrix coefficients is the subspace

M(π) = spank(aij | 1 ≤ i, j ≤ n) ⊂ k[G]

spanned by the functions aij : G→ k, whence the name. The reason that we do not
take this formula as our definition of M(π) is that it is not a priori clear that the
subspace spank(aij) ⊂ k[G] is independent of the choice of basis.

Theorem 11. Let k be an algebraically closed field. If (V, π) is a finite dimensional
irreducible k-linear representation of a group G, then

π � π∗
µ
// RegM(π)

is an isomorphism of k-linear representations of G×G. In particular, the k-linear
representation RegM(π) is irreducible.
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Proof. The map µ : V ⊗ V ∗ →M(π) is surjective, by definition, and it intertwines
between π�π∗ and RegM(π). Since π is finite dimensional and irreducible, the same
is true for π∗, and since k is algebraically closed, Theorem 9 shows that π � π∗ is
irreducible. Hence, the kernel of µ is either zero or all of V ⊗ V ∗. But it is easy to
see that µ : V ⊗ V ∗ → k[G] is not the zero map. Indeed, choosing a basis of V as
above, we see that aii(e) = 1, so 0 6= aii ∈M(π) = im(µ). So µ is injective. �

We list some consequences of Theorem 11:

(1) If k is algebraically closed and if π is an irreducible k-linear representation
of finite dimension n, then

dimk(M(π)) = n2.

(2) For π as in (1), we have RM(π) ' π ⊕ · · · ⊕ π and LM(π) ' π∗ ⊕ · · · ⊕ π∗,
where there are n summands in both cases.

(3) If k is algebraically closed and if π1 and π2 are finite dimensional irreducible
k-linear representations, then RegM(π1) ' RegM(π2) implies that π1 ' π2.

(4) If k is algebraically closed and if π1, . . . , πm are pairwise non-isomorphic
finite dimensional irreducible k-linear representations of G, then

M(π1)⊕ · · · ⊕M(πm) // k[G]

is injective.

Unitary representations

Our final application of Schur’s lemma concerns unitary representations. A finite
dimensional complex representation (V, π) of a group G is unitary if there exists a
hermitian inner product 〈−,−〉 on V that is π-invariant in the sense that

〈π(g)(x), π(g)(y)〉 = 〈x,y〉,

for all g ∈ G and x,y ∈ V , or equivalently, if the induced isomorphism

V̄
b // V ∗

given by b(x)(y) = 〈x,y〉 is intertwining between π̄ and π∗. We will now show that
a π-invariant hermitian inner product is unique, up to scaling.

Theorem 12. Suppose that π : G → GL(V ) is a finite dimensional irreducible
unitary representation. If both 〈−,−〉1 and 〈−,−〉2 are π-invariant hermitian inner
products on V , then there exists a real number λ > 0 such that for all x,y ∈ V ,

〈x,y〉2 = λ · 〈x,y〉1.

Proof. We define h : V̄ → V̄ to be the composite isomorphism

V̄
b1 // V ∗

(b2)−1

// V̄ .

By assumption, both b1 and b2 are intertwining with respect to π̄ and π∗, so h is
intertwining with respect to π̄. Finally, since π̄ is irreducible, Schur’s lemma shows
that h = λ · idV̄ for some λ ∈ C, and λ 6= 0, because h is an isomorphism. Finally,
for any 0 6= x ∈ V , both 〈x,x〉1 and 〈x,x〉2 are positive real numbers, so λ is
necessarily real and positive. �
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Theorem 13. Let (V, π) be a finite dimensional unitary representation of a group
G, and suppose that U1, U2 ⊂ V are π-invariant subspaces with the property that
the representations π1 = πU1 and π2 = πU2 are non-isomorphic and irreducible. In
this situation, the subspaces U1, U2 ⊂ V are necessarily orthogonal with respect to
any π-invariant hermitian inner product on V .

Proof. We choose a π-invariant hermitian inner product 〈−,−〉 on V . Since U1 ⊂ V
is π-invariant, so is its orthogonal complement W1 ⊂ V with respect to 〈−,−〉, and
moreover, the composition of the canonical inclusion and the canonical projection

U1
i1 // V

q1 // V/W1

is a complex linear isomorphism h = q1◦i1 that intertwines between πU1
and πV/W1

.
The orthogonal projection p : V → U1 with respect to 〈−,−〉 is the composition

V
q1 // V/W1

h−1
// U1,

so it is intertwining between π and π1. Now, the composite map

U2
i2 // V

p1 // U1

is intertwining between π2 and π1, and since these representations are assumed to be
irreducible and non-isomorphic, it follows from Schur’s lemma that the composite
map is zero. This shows that the subspaces U1, U2 ⊂ V are orthogonal with respect
to 〈−,−〉, as stated. �
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