SCHUR’S LEMMA AND ITS APPLICATIONS

SCHUR’S LEMMA

Let (V1,m1) and (Va,ms) be k-linear representations of a group G and recall that
a k-linear map f: V3 — V5 is intertwining between m; and 7o if the diagram

Vit

Jm(y) lﬂz(g)

Vi,

commutes for all g € G. We will write
Hom(ﬂ'l, 7'('2) C Homk(Vl, Vé)
for the subspace of intertwining k-linear maps.

Theorem 1 (Schur’s lemma). Let (Vy,m) and (Va,m2) be two irreducible k-linear
representations of a group G. A k-linear map f: Vi — Vu that is intertwining
between m and my is either an isomorphism or the zero map.

Proof. Tt follows immediately from the fact that f: V3 — V5 is intertwining between
m and o, that ker(f) C V; is mi-invariant and that im(f) C V5 is me-invariant.
Therefore, since 7; was assumed to irreducible, either ker(f) = {0} or ker(f) = V1,
and since w5 was assumed to be irreducible, either im(f) = {0} or im(f) = V2. O

Theorem 2. Suppose that (Vs, 7s))ses s a finite family of pairwise non-isomorphic
irreducible k-linear representations of a group G, and that U C @, g Vs is a
P, cg ms-invariant subspace. There exists a (unique) subset T C S such that

U= @teTVt - @ses Vs.

Proof. Let V. = @,cq Vs, let m = @, g7, and let is: Vi — V be the canonical
inclusion, which is intertwining between 75 and 7. Theorem 12 in Lecture 4 shows
that U C V is the image of *some* injective k-linear map

f
Dier Vi —V
that is intertwining between P, ., 7 and 7, and we wish to show that the map

i=2t it
Dier Vi 4
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will do. Let ps: V' — V; be the unique map such that psoi;: Vi — Vj is the identity
map of Vj if s = ¢ and the zero map if s # ¢t. We consider the composite maps

®uET Vu ! 4

)

st

Vi————V;

for s € S and t € T. Theorem 1 shows that f,; is zero if s # ¢, so the diagram

Dier Vi 4
\L@teT feot V

Dicr Vi /t

commutes. Moreover, the maps f;; cannot be zero, since the top slanted map is
injective, so Theorem 1 shows that the f; . all are isomorphisms, and hence, the
left-hand vertical map is an isomorphism. In particular,

U = im(f) = im(i),

as we wanted to prove. (I

If (V, ) is an irreducible k-linear representation of G, then Schur’s lemma shows,
in particular, that the endomorphism ring

End(7) C Endg (V)

is a division algebra D over k. In general, every finite dimensional division algebra
over k occurs as End(7) for a finite dimensional irreducible k-linear representation
of some group G.! We now make the very simplifying assumption that

kE=k
is an algebraically closed field, so that, up to unique isomorphism, the only finite

dimensional division algebra over k is D = k. In this case, Schur’s lemma implies
the following result, which is also known as Schur’s lemma.

Theorem 3. Let k be an algebraically closed field. If (V,7) is a finite dimensional
irreducible k-linear representation of a group G, then the map

k —— End(n)
defined by n(A\) = A -idy is a ring isomorphism.

Proof. The map 7 is injective, because V is nonzero, and to prove that it surjective,
we let f: V — V be a k-linear map that is intertwining with respect to 7. Since k is
algebraically closed, the map f has an eigenvalue A € k, and since f is intertwining
with respect to 7, the eigenspace

{0} #V\CV
is a m-invariant subspace. Since m is irreducible, we conclude that V) = V, or

equivalently, that f = X - idy, which shows that 7 is surjective. (Il

LIf D finite dimensional real division algebra, then D ~ R, C, or H.
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Corollary 4. Let (Vy,m) and (Va,ms) be isomorphic finite dimensional irreducible
k-linear representations of a group G. If k is algebraically closed, then

dimy, Hom(7y, m2) = 1.

Proof. We choose any k-linear isomorphism h: V; — V5 that intertwines between
m1 and 7. (Such an h exists by assumption.) Now, if f: V4 — V5 is any k-linear
map that intertwines between m; and 7o, then f o h™': Vo — V5 is intertwining
with respect to mo. Hence, by Theorem 3, f o h=™! = X -idy, for a unique X € k, so
we find that f=X-h. O

Remark 5. More precisely, Corollary 4 shows that the composition maps

HOIH(’ITl,ﬂ'Q) X End(m) L> HOHl(T('l,TFQ)
End(7) x Hom (7, my) —— Hom(mry, 7o)
simultaneously make Hom(71, 72) a free right End (7 )-module of rank 1 and a free

left End(72)-module of rank 1. However, neither module has a preferred generator:
There is no preferred way to compare 7, and 7.

In Theorem 2, we considered a finite sum of pairwise non-isomorphic irreducible
representations. In the next result, we will consider the opposite situation of a finite
sum of irreducible representations, all of which are isomorphic.

Theorem 6. Let k be an algebraically closed field, and let (U,7) and (V, ) be finite
dimensional k-linear representations of a group G such that T is trivial and w is
irreducible. Given a w @ T-invariant subspace W C V@U with (1 @ T)w irreducible,
there exists (a non-unique) vector w € U such that the map

V- vVeU
defined by i,(v) = v ® w is an isomorphism from V onto W and is intertwining

between m and (7 @ T)w .

Proof. The map i,, is clearly k-linear and intertwining between 7 and 7 ® 7, so we
must show that w € U can be chosen such that W = 4,,(V) C V ® U. We have
seen earlier that every irreducible subrepresentations of m ® 7 is isomorphic to .
In particular, we may choose a k-linear isomorphism h: W — V that intertwines
between (7 ® 7)w and 7. Now, for every f € U*, we let
cf
Vel —V

to be the unique k-linear map such that cy(v®@wu) = v- f(u). It intertwines between
7 ® 7 and 7, and since k is algebraically closed, Corollary 4 shows that

crlw =A(f) - h
for a unique A(f) € k. The map
U2k
that to f assigns A\(f) is k-linear, so A € U**. But the map

ULy
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is an isomorphism, since U is finite dimensional, so A = n(u) for a unique u € U.
We claim that for this u € U, we have i, (V) = W C V ® U. To prove this, we
choose a basis (v1,...,v,) of V and write w € W as

w = Zlgignvi@ui

with w; € U. (This way of writing w is unique, but we will not need this fact.)
Now, for every f € U*, we have

Di<icn Vif (ui) = cp(w) = M(f) - h(w) = f(u) - h(w).
Therefore, if f(u) =0, then f(u;) =0 for all 1 <i < n, and hence,
u; € span(u) C U.

This shows that {0} # W C i, (V) C V ® U, and since i,(V) ~ V is irreducible,
we conclude that W = i,, (V) as stated. Note that the vector u € U depends on the
choice of the isomorphism h: W — V. (I

ABELIAN GROUPS

We will next show that if k is algebraically closed, then every finite dimensional
k-linear irreducible representation of an abelian group is 1-dimensional. We have
seen that the representation of the group (R, +) on R? by rotation is irreducible,
so the assumption that k be algebraically closed is necessary.

Theorem 7. Let k be an algebraically closed field. If (V, ) is a finite dimensional
irreducible k-linear representation of an abelian group A, then

Proof. Since A is abelian, we have
m(g)om(h) =7(g-h) =m(h-g) =m(h)on(g)
for all g,h € A. Hence, for all g € A, the k-linear map

v 7(9) v

is intertwining with respect to 7, so by Schur’s lemma, we have

m(g) = A-idy
for some A = A(g) € k. But this implies that every subspace W C V is w-invariant,
and since V' is irreducible, this shows that dim (V) = 1. O

We recall that the abelianization of a group G is a group homomorphism
G " G
with the property that for every group homomorphism f: G — A with A abelian,
there exists a unique group homomorphism f2b: G®» — A such that f = f2P o p.
This property characterizes the abelianization p: G — G* uniquely, up to unique
isomorphism under G. The group homomorphism p is surjective, and its kernel is
the commutator subgroup [G,G] C G. In particular, any 1-dimensional k-linear
representation 7: G — GL(V) of a group G determines and is determined by the
I-dimensional k-linear representation 7*: G*® — GL(V) of G*". Moreover, if k
is algebraically closed, then a finite dimensional k-linear representation of G2 is
1-dimensional if and only if it is irreducible.
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Ezxample 8. The abelianization of the symmetric group ¥,, is the signature
5, —s {£1}.

Therefore, up to non-canonical isomorphism, the only 1-dimensional representations
of X, over an algebraically closed field k are the trivial representation and the sign
representation.

EXTERIOR TENSOR PRODUCT

We have seen that tensor products of irreducible k-linear representations are
typically not irreducible, even if k is algebraically closed. We now show that the
exterior tensor product of irreducible k-linear representations is always irreducible.

Theorem 9. Let k be an algebraically closed field. If both m1: G; — GL(V1) and
ma: Go — GL(V3) are finite dimensional irreducible k-linear representations, then
so is their exterior tensor product

w1 Xmo

Gy x Gy 225 GL(V; @ Va).

Proof. We let {0} # W C V; ® V; be a m; K me-invariant subspace and must show
that W = V] ® V5. We note that

(m1 W 72)(g1,€) = (m1 @ 7)(91)

(m1 K m2)(e, g2) = (T ®m2)(g2),
so W C Vi ® V5 is both a m; ® T-invariant subspace of the k-linear representation
m @7 of Gy x{e} C G1 x G2 and a T @me-invariant subspace of the k-representation
T ® my of {e} X Gy C G1 x Ga. Hence, by Theorem 6, there exists Us C V5 and
Uy C V1 such that both the (injective) maps induced by the canonical inclusions

ViU, — Vi@V« U@V,

have image W. So the square diagram of inclusions

Uy Usy —— Vi ®Us

.

VieUy ——W
is cocartesian, and the right-hand vertical map and the lower horizontal are both
isomorphisms. This implies (by the five-lemma) that
(V1/U1) @ Uy = {0} = Uy @ (Vo/Us),
which, in turn, implies that U; = V; and Uy = V5. So W = V] ® V; as desired. 0O

Ezample 10. We show that, in Theorem 9, the assumption that k be algebraically
closed is necessary. The representation m: G = (R, +) — GL(R?) defined by

(1) r1\ _ (cost —sint T
zo ) \sint cost) \x
is irreducible, but we claim that 7 X 7 is not. Indeed, if 7 X7 were irreducible, then
also (7X¥7)¢ would either be irreducible or a sum of two irreducible representations.
But this contradicts Theorem 7, since G x G is abelian and
dime ((7 K 7)¢) = dimg (7 X 7) = 4.
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Let k be a field, and let G be a group. We recall that k[G] is k-vector space of
all functions f: G — k and that

a T aLka)
are the left and right regular k-linear representations defined by

L(g)(f)(h) = f(g~"h)
R(g)(f)(h) = f(hg).

Since the maps R(g1) and L(g2) commute, we obtain a representation

G x G 2%, QL(k[G)

defined by Reg(g1,92) = L(g2) o R(g1) = R(g1) o L(g2). We call this representation
the two-sided regular representation. Spelling out the definition, we have

Reg(g1, 92)(f)(h) = f(g5 'ha1)-
Given any k-linear representation
G —"— GL(V),
the k-linear map
VeV —t5kq)

defined by p(z ® f)(h) = f(x(h)(x)) is intertwining between m K 7* and Reg. We
define the space of matrix coefficients (or matrix elements) of 7 to be its image

M(r) = u(V & V*) C k[G).

The reason for this name is as follows. Suppose that V is finite dimensional. If we
let (v1,...,v,) be a basis of V, let (v},...,v%) be the dual basis of V*, and let

A(h) = (ay;(h)) € My(k)
be the matrix that represents 7(h) with respect to (v1,...,v,), then
aij(h) = p(v; @ v7)(h).
This shows that that space of matrix coefficients is the subspace
M (m) = spany(a;; | 1 <i,5 <n) Ck[G]

spanned by the functions a;;: G — k, whence the name. The reason that we do not
take this formula as our definition of M () is that it is not a priori clear that the
subspace spany (a;;) C k[G] is independent of the choice of basis.

Theorem 11. Let k be an algebraically closed field. If (V, ) is a finite dimensional
irreducible k-linear representation of a group G, then

X * L} RegM(W)

is an isomorphism of k-linear representations of G x G. In particular, the k-linear
representation Regyy () is irreducible.
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Proof. The map pu: V @ V* — M(7) is surjective, by definition, and it intertwines
between 77" and Reg (). Since 7 is finite dimensional and irreducible, the same
is true for 7*, and since k is algebraically closed, Theorem 9 shows that = X 7* is
irreducible. Hence, the kernel of y is either zero or all of V' ® V*. But it is easy to
see that p: V@ V* — E[G] is not the zero map. Indeed, choosing a basis of V' as
above, we see that a;;(e) =1, so 0 # a;; € M(m) = im(u). So p is injective. O

We list some consequences of Theorem 11:

(1) If k is algebraically closed and if 7 is an irreducible k-linear representation
of finite dimension n, then

dimy, (M (7)) = n?.

*

(2) For m as in (1), we have Ry(r) 7@ --- @ mand Ly 7" @ - &7,
where there are n summands in both cases.

(3) If k is algebraically closed and if 71 and 7o are finite dimensional irreducible
k-linear representations, then Regys (., =~ Regy(r,) implies that m ~ 7.

(4) If k is algebraically closed and if 1,...,m, are pairwise non-isomorphic
finite dimensional irreducible k-linear representations of G, then

M(my) & -+ & M(mm) —— k[G]

is injective.
UNITARY REPRESENTATIONS

Our final application of Schur’s lemma concerns unitary representations. A finite
dimensional complex representation (V,7) of a group G is unitary if there exists a
hermitian inner product (—, —) on V that is m-invariant in the sense that

(m(g)(x), 7(9)(y)) = (z,y),
for all g € G and x,y € V, or equivalently, if the induced isomorphism
(LA v
given by b(z)(y) = (x,y) is intertwining between 7 and 7*. We will now show that
a m-invariant hermitian inner product is unique, up to scaling.

Theorem 12. Suppose that m: G — GL(V) is a finite dimensional irreducible
unitary representation. If both (—, —)1 and (—, =)o are w-invariant hermitian inner
products on V, then there exists a real number A\ > 0 such that for all x,y € V,

<w7y>2 =A- <£E,’y>1.
Proof. We define h: V — V to be the composite isomorphism

gy Sy
By assumption, both b; and b, are intertwining with respect to @ and 7*, so h is
intertwining with respect to . Finally, since 7 is irreducible, Schur’s lemma shows
that h = A -idy for some A € C, and A # 0, because h is an isomorphism. Finally,
for any 0 # « € V, both (x,x); and (x,x)y are positive real numbers, so A is
necessarily real and positive. (I



Theorem 13. Let (V,7) be a finite dimensional unitary representation of a group
G, and suppose that Uy, Us C V are m-invariant subspaces with the property that
the representations m1 = my, and T = Ty, are non-isomorphic and irreducible. In
this situation, the subspaces Uy,Us C V are necessarily orthogonal with respect to
any m-invartant hermitian inner product on V.

Proof. We choose a m-invariant hermitian inner product (—, —) on V. Since U; C V
is m-invariant, so is its orthogonal complement Wy C V' with respect to (—, —), and
moreover, the composition of the canonical inclusion and the canonical projection

U, ——v-—5v/w,
is a complex linear isomorphism h = g1 041 that intertwines between 7y, and v/, .
The orthogonal projection p: V' — U; with respect to (—, —) is the composition

q1 Rt

V—V/W —— Uy,

so it is intertwining between 7w and 7. Now, the composite map
Uy —V 251,

is intertwining between 75 and 71, and since these representations are assumed to be
irreducible and non-isomorphic, it follows from Schur’s lemma that the composite

map is zero. This shows that the subspaces Uy, Us C V are orthogonal with respect
to (—, —), as stated. O



