CHARACTER THEORY FOR FINITE GROUPS

Let us first show that, for every field k& an irreducible k-linear representation of
a finite group G is necessarily finite dimensional.

Lemma 1. Let k be a field. If a k-linear representation (V,w) of a finite group G
is irreducible, then the k-vector space V is finite dimensional.

Proof. Let (V, ) be an irreducible k-linear representation of G. Since V' is nonzero,
there exists a nonzero vector & € V', so the subspace W C V spanned by the family
(m(g)(x))gec is nonzero. But it is also m-invariant, so W =V, by the assumption
that 7 is irreducible. Since G is finite, the family (7(g)(x))gec is a finite family, so
W =V is a finite generated, and hence, finite dimensional k-vector space. O

So let G be a finite group. Because of Lemma 1, we will only consider finite
dimensional k-linear representations of G. We will also assume that & is algebraically
closed. Since G is finite, a basis of k[G] is given by the family (J,)recq, where

5uly) = 1 ifzx =y,
=)= 0 ifx#y.

We let (V,7) be a finite dimensional k-linear representation of G and recall that
the subspace of matrix coefficients

M () C k[G]
is defined to be the image of the map
Ve v —L5kaq

given by u(x ® ¢)(h) = @(w(h)(x)). It is a Reg-invariant subspace, where

G x G 5 GL(K[G])
is the two-sided regular representation of G x G on V' defined by
Reg(g1.92)(f)(h) = f(g5 'han)-

Since k is algebraically closed, Schur’s lemma implies the following statements,
which we proved last time.
(1) If 7 is irreducible, then Regy;() ~ 7 X 7.
(2) If w1 and my are irreducible, then m ~ 7o if and only if M (m) = M (m3).
(3) If mq,..., 7w, are pairwise non-isomorphic and irreducible, then the map
M(m) @ - @& M(my,) — k[G]

induced by the canonical inclusions is injective.

Theorem 2. If G is a finite group and if k is an algebraically closed field, then G
has at most |G| pairwise non-isomorphic irreducible k-linear representations.
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Proof. Tt follows from (3) that
q < dimy,(M(my) & -+ & M(mg)) < dimy (k[G]) = |G,
which proves the theorem. ([l

Theorem 3. Let G be a finite group, and let k be an algebraically closed field of
characteristic zero. If w1, ..., ™, are representatives of the isomorphism classes of
irreducible k-linear representations, then the map

M(m) @ - & M(ny) — k[G]
induced by the canonical inclusions is an isomorphism.
Proof. The map is injective by (3) above, so it remains to prove that it is also

surjective. Let R: G — GL(k[G]) be the right regular representation, which, we
recall, is defined by R(g)(f)(h) = f(hg). We claim that

M(R) = k[G].
Indeed, let €: k[G] — k be the k-linear map defined by €(f) = f(e). So € € k[G]*
and for all f € k[G], the calculation
u(f @ €)(h) = e(R(h)(f)) = f(e-h) = f(h)
shows that f = u(f ® €) € M(R). Now, since G is a finite group, whose order |G|

is not divisible by the characteristic of k, it follows from Maschke’s theorem that
every finite dimensional k-linear representation of GG is semisimple. So

Rem" @---omy.
But if p and 7 are any finite dimensional k-linear representations of G, then
M(p@T)=M(p)+ M(T) C K[G].
Therefore, we conclude that
E[G] = M(R) C M(m)+---+ M(m,) C k[G],
which shows the surjectivity of the map in the statement. O

Addendum 4. Let G be a finite group, and let k be an algebraically closed field of
characteristic zero. If (Vi,m1),...,(Vy,mq) are representatives of the isomorphism
classes of irreducible k-linear representations, then

Gl =3+,

where n; = dimy (V;).

Proof. By Theorem 3, we have

|G| = dimy (k[G]) = dimy (M (m1)) + - - - + dimg (M (7)),
and dimg (M (;)) = n2. Indeed, since k is algebraically closed and m; irreducible, the
map fr, : V;®@V,* — M(m;) is an isomorphism, and dimg (V;*) = dimg(V;) =n,;. O
Example 5. Let k be algebraically closed of characteristic zero.

1) A finite abelian group A has precisely |A| pairwise non-isomorphic irreducible
k-linear representations, all of which 1-dimensional.

2) Let G = X3. We have found three pairwise non-isomorphic irreducible k-linear
representations of G, namely,
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(i) the 1-dimensional trivial representation 7,
(ii) the 1-dimensional sign representation sgn, and
(iii) the 2-dimensional representation 7 of G' on

V={zek’| v +a2+a3=0}CEK*

defined by
Z1 Ta(1)
m(@)(| 22 |) = | o)
z3 Lo (3)

Since we have
|G| = 6 =17 4 12 + 2% = dimg(7)? 4 dimy (sgn)? + dimy, ()2,

we conclude from Addendum 4 that, up to non-canonical isomorphism, we have
found all irreducible representations of G.

We next prove a lemma concerning matrix coefficients.

Lemma 6. Let G be a group, let k be a field, and let (V, ) be a finite dimensional
k-linear representation of G. There is a commutative diagram

(V) —“ kG

Vev:

with 1/ (f)(h) = tr(w(h)(f)) and a(x @ ¢)(y) = = - ¢(y), and moreover, the map o
is an isomorphism. Accordingly, the subspace of matriz coefficients

M(r) C k[G]

Endk

is equal to the common image of p and .

Proof. Let (v1,...,v,) be a basis of V, and let (v},...,v}) be the dual basis of
the dual k-vector space V*. For g € G, let

A(g) = (ai;(g)) € Mn (k)

be the matrix that represents 7(g) with respect to the basis (vq,...,v,) of V. As
we have calculated before, we have

w; @v7)(9) = aij(g).

K)  py .ok
Now, we have a(v; ® v}) =v; - v

79

and
(n(g) 05 - o) (v4) = {g(ngj) 1; ) :

and therefore, we find that also
(W o a)(v; ®v7)(9) = tr(n(g) o v; - v]) = ay(9),

which shows that indeed p = p’ o« as stated. Finally, the map « is an isomorphism,

since it maps the basis (v; ® v])i<i j<n of the k-vector space V @ V* to the basis

(v; - v} )1<i,j<n Of the k-vector space Endy (V). O
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Remark 7. In the situation of Lemma 6, the maps u = pr and p’ = p!. depend on
the k-linear representation (V, ), where as the map a = vy only depends on the
k-vector space V.

Definition 8. Let k be a field, and let G be a group. If (V, 7) is a finite dimensional
k-linear representation of GG, then its character

X= € k[G]

is the function defined by x(g) = tr(w(g)).

We note that x, belongs to the subspace of matrix coefficients. More precisely,
Yo = 1 (idv) € M () C k[G].

The main result of this lecture is that for G finite and k£ an algebraically closed
field of characteristic zero, the character x, determines w, up to non-canonical
isomorphism. We first record some properties of the character.

Proposition 9. Let k be a field and let G be a group. The character of finite
dimensional k-linear representations of G has the following properties.

(1) If my =~ ma, then Xa, = Xro-
(2) The character of the dual of a representation is given by

X+ (9) = Xx(971)-
(3) The character of a sum of representations is given by
Xmi@my = Xm + Xra-
(4) The character of a tensor product of representations is given by
Xmi@my = Xmy * Xma
(5) Forall g,h € G, Xx(ghg™") = Xx(h).

Proof. (1) That 1 ~ 7o means that there exists a k-linear isomorphism h: V3 — V4
such that m2(g) = homi(g) o h~! for all g € G. But then

X (9) = tr(ma(g)) = tr(homi(g) o h™1) = tr(m1(9)) = X, (9)-
(2) By definition, 7*(g) = m(g~1)*, so
Xa-(9) = tr(7*(g)) = tr(w(g™")*) = tr(n(g™")) = xx(g7").

(3) This follows immediately from the fact that tr(f1 @ f2) = tr(f1) + tr(f2).
(4) Since tr(f1 ® fa) = tr(f1) - tr(f2), we have, more generally, that

X1 B, (915 92) = Xy (91) * Xz (92),

so restricting along A: G — G x G, the stated formula follows.
(5) This follows from the fact that tr(f; o fo) = tr(fa o f1). O

Definition 10. Let k& be a field, and let G be a finite group. A function f: G — k
is central if f(ghg™!) = f(h) for all g,h € G.
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It is clear that the subset of k[G] that consists of the central functions is a k-linear
subspace. We denote this subspace by?

Z(k[G]) © k[G.

The explanation for this notation is as follows. The k-vector space k[G] becomes a
k-algebra under the convolution product * defined by

(fr* f2)(9) = Xop nyeyg f1(R1) f2(R2),

and moreover, the map u,: End,(V) — E[G] is a k-algebra homomorphism with
respect to the composition product on Endg (V) and the convolution product on
k[G] in the sense that p! is k-linear and

tir (f1 0 f2) = pn (f1) * pr (f2)

for all f1, fo € Endg(V). Now, the subspace Z(k[G]) C k[G] is the center of the
k-algebra (k[G],+, *) in the sense that f € Z(k[G]) if and only if

fxh=hxf
for all h € k[G].

Lemma 11. Let G be a finite group, and let k be an algebraically closed field of
characteristic zero. If w is an irreducible k-linear representation of G, then

Z(k[G]) N M () = spany (xx)-

Proof. We use that by Lemma 6, we have

M(m) = {p(f) | f € Endy(V)} C K[G],

where ! (f)(g) = tr(w(g) o f). Since 7 is irreducible, the map -, and hence, also
the map p/ is injective, so the induced map

Endy (V) —"s M ()
is an isomorphism. Now, we calculate that
e (f)(ghg™) = tr(n(ghg™") o f)
= tr(n(g) o m(h) om(g) " o f)
= tr(n(h) o m(g) ™" o fom(g))
= pr(n(g) "t o fom(g))(h),
which shows that the function p/ (f) is central if and only if for all g € G, we have
f=mn(g) o fom(g).

So pl(f) is central if and only if f: V — V is m-invariant. By Schur’s lemma,
f:V — V is m-invariant if and only if f = ¢-idy for some nonzero ¢ € k. But

pi(c-idy) = ¢ pl(idy) = ¢+ X,

which proves the lemma. (I

L The book write k[G]# for this subspace.



Theorem 12. Let k be an algebraically closed field of characteristic zero, let G be
a finite group, and let my,..., 7y be representatives of the isomorphism classes of
irreducible k-linear representations of G. In this situation, the family

(XTH? e 7X7Tq)
of their characters is a basis of the k-vector space Z(k[G)).

Proof. This follows immediately form Theorem 3 and Lemma 11. O

The promised main result concerning characters is the following corollary.
Corollary 13. In the situation of Theorem 12, the following hold:

(1) The dimension of the k-vector space Z(k|G]) is equal to the number of
isomorphism classes of irreducible k-linear representations of G, which, in
turn, is equal to the number of conjugacy classes of elements of G.

(2) The isomorphism class of any finite dimensional k-linear representation m
of G (not necessarily irreducible) is determined by its character x .

Proof. (1) The fact that the dimension of the k-vector space Z(k[G]) is equal to
the number of isomorphism classes of irreducible k-linear representations follows
immediately from Theorem 12. But Z(k[G]) is defined to be the k-vector spaces of
central functions f: G — k, and a function f: G — k is central if and only if it
factors through the canonical projection p: G — G'\G®® onto the set of orbits for
action by G on itself by conjugation. Hence, the dimension of Z(k[G]) is also equal
to the cardinality of G \G®4.

(2) Since 7 is semisimple, we have 7 ~ 7" @ --- @ 7,"?, so by Proposition 9,

Xr = Mi1Xm + -+ MgXmg-

But k has characteristic zero, so the unique ring homomorphism Z — k is injective,
and therefore, this identity in k[G] determines the integers my, ..., mg,.> O

Let us use this result to determine the isomorphism classes of irreducible complex
representations of the symmetric group G = ¥4, which has order |G| = 24. We recall
that the cycle-type of a permutation of n letters is the partition of n obtained from
counting the number of elements in cycles.

Lemma 14. The map that to a permutation o € 3, assigns its cycle type induces a
bijection of the set of conjugacy classes of elements in X, onto the set of cycle-types
of permutations of n letters.

Proof. Indeed, a conjugation of a permutation corresponds to a relabelling of the
elements in {1,2,...,n}. O
For n = 4, there are five cycle-types, namely
1+14+1+1,2+1+4+1,242,3+1, and 4,
and the permutations
e, (12), (12)(34), (123), and (1234)

21f instead the characteristic of k were a prime number £, then the identity in k[G] would only
determine the congruence classes of the integers mz, ..., mg modulo 4.
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represent the corresponding conjugacy classes of elements in G = 34. Hence,
dim¢(Z(C[G))) = 5,

and there are five isomorphism classes of irreducible complex representations of G.
We know three of these already, namely,

(i) the 1-dimensional trivial representation 73 = 7,
(ii) the 1-dimensional sign representation w9 = sgn, and
(iii) the 3-dimensional representation 73 of G on

V3={£BE(C4‘21+Zz+23+24=0}C(C4

defined by
21 Zo(1)
2z 2y
w2 =]
24 Zo(4)

By Addendum 4, the dimensions n4 and ns of the remaining two irreducible complex
representations w4 and 7 satisfy

24 =12+ 12 + 3% + n] +nZ,
which implies that ny = 3 and ns = 2. We claim that
Ty ™~ o Q 3.

To prove this, we must show that 7o ® 73 is irreducible and not isomorphic to 3.
Now, the representation mo ® 73 is irreducible, because

sgn @ Mo ® T3 = sgn ® sgn ® w3 ~ 13,

and because 73 is irreducible, and to show that 75 ® 73 is not isomorphic to s, it
suffices by Corollary 13 to show that

Xma@ms = Xma * Xmz = S8 "Xy 7é Xms -

To prove this, it will suffice to find o € G such that sgn(o) = —1 and x,(c) # 0.
To this end, we consider m = w1 @ 73, which has

Xr = Xmy + Xns = 1+X7r3~

But = is isomorphic to the standard permutation representation of G on C*, so the
matrix that represents m((12)) with respect to the standard basis of C* is

01 00
1 000
FIGE R I
0 0 01
50 X ((12)) = 2, which shows that xr,((12)) = 1 # 0 as desired. This proves the

claim that m4 ~ 7 ® m3.

What about the remaining 2-dimensional irreducible complex representation ms?
In general, for every set X, there is a group homomorphism

Aut(X) — Aut(P(X))
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from the group of permutations of the set X to the group of permutation of its
power set P(X) defined by

tx(0)(U)={o(x) e X |z €U} CX.

Hence, given a (left) action p: G — Aut(X) by a group G on a set X, we get the
induced action tx o p: G — Aut(P(X)) of G on P(X). We let X = {1,2,3,4}, and
let p: G — Aut(X) be the identity map and consider the action

Lp(X)OLXOp

G Aut(P(P(X)))
on the iterated power set P(P(X)). It leaves the subset
Vo= {{{1,2}, {3,431}, {{1, 3}, {2,4}}, {{1, 4}, {2,3}}} € P(P(X))
with three elements invariant, so we obtain a group homomorphism
G —2 Aut(Y) ~ 3.
Clearly, the kernel of p is the (necessarily normal) subgroup
N = {e, (12)(34),(13)(24),(14)(23)} C G,

so comparing orders, we conclude that p is surjective. Hence, the 2-dimensional
irreducible complex representation (V, 1) of X3 defines the 2-dimensional irreducible
complex representation (V, 7 o p) of G, and this is 5.

Remark 15. Geometrically, we can picture the group homomorphism
G —2—5 Aut(Y)

above as follows. We may view G as the group of symmetries of the tetrahedron
[ ]

N

_———e

7

It has 6 edges, and hence, 3 pairs of an edge and its opposing edge. Now the map
p takes a permutation of the 4 vertices to the induced permutation of these 3 pairs
of opposing edges.



