
CHARACTER THEORY FOR FINITE GROUPS

Let us first show that, for every field k an irreducible k-linear representation of
a finite group G is necessarily finite dimensional.

Lemma 1. Let k be a field. If a k-linear representation (V, π) of a finite group G
is irreducible, then the k-vector space V is finite dimensional.

Proof. Let (V, π) be an irreducible k-linear representation of G. Since V is nonzero,
there exists a nonzero vector x ∈ V , so the subspace W ⊂ V spanned by the family
(π(g)(x))g∈G is nonzero. But it is also π-invariant, so W = V , by the assumption
that π is irreducible. Since G is finite, the family (π(g)(x))g∈G is a finite family, so
W = V is a finite generated, and hence, finite dimensional k-vector space. �

So let G be a finite group. Because of Lemma 1, we will only consider finite
dimensional k-linear representations ofG. We will also assume that k is algebraically
closed. Since G is finite, a basis of k[G] is given by the family (δx)x∈G, where

δx(y) =

{
1 if x = y,

0 if x 6= y.

We let (V, π) be a finite dimensional k-linear representation of G and recall that
the subspace of matrix coefficients

M(π) ⊂ k[G]

is defined to be the image of the map

V ⊗ V ∗
µ
// k[G]

given by µ(x⊗ ϕ)(h) = ϕ(π(h)(x)). It is a Reg-invariant subspace, where

G×G GL(k[G])
Reg

//

is the two-sided regular representation of G×G on V defined by

Reg(g1, g2)(f)(h) = f(g−12 hg1).

Since k is algebraically closed, Schur’s lemma implies the following statements,
which we proved last time.

(1) If π is irreducible, then RegM(π) ' π � π∗.

(2) If π1 and π2 are irreducible, then π1 ' π2 if and only if M(π1) = M(π2).
(3) If π1, . . . , πm are pairwise non-isomorphic and irreducible, then the map

M(π1)⊕ · · · ⊕M(πm) // k[G]

induced by the canonical inclusions is injective.

Theorem 2. If G is a finite group and if k is an algebraically closed field, then G
has at most |G| pairwise non-isomorphic irreducible k-linear representations.
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Proof. It follows from (3) that

q ≤ dimk(M(π1)⊕ · · · ⊕M(πq)) ≤ dimk(k[G]) = |G|,
which proves the theorem. �

Theorem 3. Let G be a finite group, and let k be an algebraically closed field of
characteristic zero. If π1, . . . , πq are representatives of the isomorphism classes of
irreducible k-linear representations, then the map

M(π1)⊕ · · · ⊕M(πq) // k[G]

induced by the canonical inclusions is an isomorphism.

Proof. The map is injective by (3) above, so it remains to prove that it is also
surjective. Let R : G → GL(k[G]) be the right regular representation, which, we
recall, is defined by R(g)(f)(h) = f(hg). We claim that

M(R) = k[G].

Indeed, let ε : k[G] → k be the k-linear map defined by ε(f) = f(e). So ε ∈ k[G]∗

and for all f ∈ k[G], the calculation

µ(f ⊗ ε)(h) = ε(R(h)(f)) = f(e · h) = f(h)

shows that f = µ(f ⊗ ε) ∈ M(R). Now, since G is a finite group, whose order |G|
is not divisible by the characteristic of k, it follows from Maschke’s theorem that
every finite dimensional k-linear representation of G is semisimple. So

R ' πn1
1 ⊕ · · · ⊕ πnqq .

But if ρ and τ are any finite dimensional k-linear representations of G, then

M(ρ⊕ τ) = M(ρ) +M(τ) ⊂ k[G].

Therefore, we conclude that

k[G] = M(R) ⊂M(π1) + · · ·+M(πq) ⊂ k[G],

which shows the surjectivity of the map in the statement. �

Addendum 4. Let G be a finite group, and let k be an algebraically closed field of
characteristic zero. If (V1, π1), . . . , (Vq, πq) are representatives of the isomorphism
classes of irreducible k-linear representations, then

|G| = n21 + · · ·+ n2q,

where ni = dimk(Vi).

Proof. By Theorem 3, we have

|G| = dimk(k[G]) = dimk(M(π1)) + · · ·+ dimk(M(πq)),

and dimk(M(πi)) = n2i . Indeed, since k is algebraically closed and πi irreducible, the
map µπi : Vi⊗V ∗i →M(πi) is an isomorphism, and dimk(V ∗i ) = dimk(Vi) = ni. �

Example 5. Let k be algebraically closed of characteristic zero.

1) A finite abelian group A has precisely |A| pairwise non-isomorphic irreducible
k-linear representations, all of which 1-dimensional.

2) Let G = Σ3. We have found three pairwise non-isomorphic irreducible k-linear
representations of G, namely,
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(i) the 1-dimensional trivial representation τ ,
(ii) the 1-dimensional sign representation sgn, and
(iii) the 2-dimensional representation π of G on

V = {x ∈ k3 | x1 + x2 + x3 = 0} ⊂ k3

defined by

π(σ)(

x1x2
x3

) =

xσ(1)xσ(2)
xσ(3)

 .

Since we have

|G| = 6 = 12 + 12 + 22 = dimk(τ)2 + dimk(sgn)2 + dimk(π)2,

we conclude from Addendum 4 that, up to non-canonical isomorphism, we have
found all irreducible representations of G.

We next prove a lemma concerning matrix coefficients.

Lemma 6. Let G be a group, let k be a field, and let (V, π) be a finite dimensional
k-linear representation of G. There is a commutative diagram

Endk(V ) k[G]

V ⊗ V ∗

µ′
//

α

``

µ

>>

with µ′(f)(h) = tr(π(h)(f)) and α(x⊗ ϕ)(y) = x · ϕ(y), and moreover, the map α
is an isomorphism. Accordingly, the subspace of matrix coefficients

M(π) ⊂ k[G]

is equal to the common image of µ and µ′.

Proof. Let (v1, . . . ,vn) be a basis of V , and let (v∗1, . . . ,v
∗
n) be the dual basis of

the dual k-vector space V ∗. For g ∈ G, let

A(g) = (aij(g)) ∈Mn(k)

be the matrix that represents π(g) with respect to the basis (v1, . . . ,vn) of V . As
we have calculated before, we have

µ(vj ⊗ v∗i )(g) = aij(g).

Now, we have α(vj ⊗ v∗i ) = vj · v∗i , and

(π(g) ◦ vj · v∗i )(vk) =

{
π(g)(vj) if i = k,

0 if i 6= k,

and therefore, we find that also

(µ′ ◦ α)(vj ⊗ v∗i )(g) = tr(π(g) ◦ vj · v∗i ) = aij(g),

which shows that indeed µ = µ′ ◦α as stated. Finally, the map α is an isomorphism,
since it maps the basis (vj ⊗ v∗i )1≤i,j≤n of the k-vector space V ⊗ V ∗ to the basis
(vj · v∗i )1≤i,j≤n of the k-vector space Endk(V ). �
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Remark 7. In the situation of Lemma 6, the maps µ = µπ and µ′ = µ′π depend on
the k-linear representation (V, π), where as the map α = αV only depends on the
k-vector space V .

Definition 8. Let k be a field, and let G be a group. If (V, π) is a finite dimensional
k-linear representation of G, then its character

χπ ∈ k[G]

is the function defined by χπ(g) = tr(π(g)).

We note that χπ belongs to the subspace of matrix coefficients. More precisely,

χπ = µ′π(idV ) ∈M(π) ⊂ k[G].

The main result of this lecture is that for G finite and k an algebraically closed
field of characteristic zero, the character χπ determines π, up to non-canonical
isomorphism. We first record some properties of the character.

Proposition 9. Let k be a field and let G be a group. The character of finite
dimensional k-linear representations of G has the following properties.

(1) If π1 ' π2, then χπ1
= χπ2

.
(2) The character of the dual of a representation is given by

χπ∗(g) = χπ(g−1).

(3) The character of a sum of representations is given by

χπ1⊕π2
= χπ1

+ χπ2
.

(4) The character of a tensor product of representations is given by

χπ1⊗π2
= χπ1

· χπ2
.

(5) For all g, h ∈ G, χπ(ghg−1) = χπ(h).

Proof. (1) That π1 ' π2 means that there exists a k-linear isomorphism h : V1 → V2
such that π2(g) = h ◦ π1(g) ◦ h−1 for all g ∈ G. But then

χπ2(g) = tr(π2(g)) = tr(h ◦ π1(g) ◦ h−1) = tr(π1(g)) = χπ1(g).

(2) By definition, π∗(g) = π(g−1)∗, so

χπ∗(g) = tr(π∗(g)) = tr(π(g−1)∗) = tr(π(g−1)) = χπ(g−1).

(3) This follows immediately from the fact that tr(f1 ⊕ f2) = tr(f1) + tr(f2).
(4) Since tr(f1 ⊗ f2) = tr(f1) · tr(f2), we have, more generally, that

χπ1�π2
(g1, g2) = χπ1(g1) · χπ2(g2),

so restricting along ∆: G→ G×G, the stated formula follows.
(5) This follows from the fact that tr(f1 ◦ f2) = tr(f2 ◦ f1). �

Definition 10. Let k be a field, and let G be a finite group. A function f : G→ k
is central if f(ghg−1) = f(h) for all g, h ∈ G.
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It is clear that the subset of k[G] that consists of the central functions is a k-linear
subspace. We denote this subspace by1

Z(k[G]) ⊂ k[G].

The explanation for this notation is as follows. The k-vector space k[G] becomes a
k-algebra under the convolution product ∗ defined by

(f1 ∗ f2)(g) =
∑
h1h2=g

f1(h1)f2(h2),

and moreover, the map µ′π : Endk(V ) → k[G] is a k-algebra homomorphism with
respect to the composition product on Endk(V ) and the convolution product on
k[G] in the sense that µ′π is k-linear and

µ′π(f1 ◦ f2) = µ′π(f1) ∗ µ′π(f2)

for all f1, f2 ∈ Endk(V ). Now, the subspace Z(k[G]) ⊂ k[G] is the center of the
k-algebra (k[G],+, ∗) in the sense that f ∈ Z(k[G]) if and only if

f ∗ h = h ∗ f

for all h ∈ k[G].

Lemma 11. Let G be a finite group, and let k be an algebraically closed field of
characteristic zero. If π is an irreducible k-linear representation of G, then

Z(k[G]) ∩M(π) = spank(χπ).

Proof. We use that by Lemma 6, we have

M(π) = {µ′π(f) | f ∈ Endk(V )} ⊂ k[G],

where µ′π(f)(g) = tr(π(g) ◦ f). Since π is irreducible, the map µπ, and hence, also
the map µ′π is injective, so the induced map

Endk(V )
µ′π // M(π)

is an isomorphism. Now, we calculate that

µ′π(f)(ghg−1) = tr(π(ghg−1) ◦ f)

= tr(π(g) ◦ π(h) ◦ π(g)−1 ◦ f)

= tr(π(h) ◦ π(g)−1 ◦ f ◦ π(g))

= µ′π(π(g)−1 ◦ f ◦ π(g))(h),

which shows that the function µ′π(f) is central if and only if for all g ∈ G, we have

f = π(g)−1 ◦ f ◦ π(g).

So µ′π(f) is central if and only if f : V → V is π-invariant. By Schur’s lemma,
f : V → V is π-invariant if and only if f = c · idV for some nonzero c ∈ k. But

µ′π(c · idV ) = c · µ′π(idV ) = c · χπ,

which proves the lemma. �

1The book write k[G]# for this subspace.
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Theorem 12. Let k be an algebraically closed field of characteristic zero, let G be
a finite group, and let π1, . . . , πq be representatives of the isomorphism classes of
irreducible k-linear representations of G. In this situation, the family

(χπ1 , . . . , χπq )

of their characters is a basis of the k-vector space Z(k[G]).

Proof. This follows immediately form Theorem 3 and Lemma 11. �

The promised main result concerning characters is the following corollary.

Corollary 13. In the situation of Theorem 12, the following hold:

(1) The dimension of the k-vector space Z(k[G]) is equal to the number of
isomorphism classes of irreducible k-linear representations of G, which, in
turn, is equal to the number of conjugacy classes of elements of G.

(2) The isomorphism class of any finite dimensional k-linear representation π
of G (not necessarily irreducible) is determined by its character χπ.

Proof. (1) The fact that the dimension of the k-vector space Z(k[G]) is equal to
the number of isomorphism classes of irreducible k-linear representations follows
immediately from Theorem 12. But Z(k[G]) is defined to be the k-vector spaces of
central functions f : G → k, and a function f : G → k is central if and only if it
factors through the canonical projection p : G → G \Gad onto the set of orbits for
action by G on itself by conjugation. Hence, the dimension of Z(k[G]) is also equal
to the cardinality of G \Gad.
(2) Since π is semisimple, we have π ' πm1

1 ⊕ · · · ⊕ πmqq , so by Proposition 9,

χπ = m1χπ1 + · · ·+mqχπq .

But k has characteristic zero, so the unique ring homomorphism Z→ k is injective,
and therefore, this identity in k[G] determines the integers m1, . . . ,mq.

2 �

Let us use this result to determine the isomorphism classes of irreducible complex
representations of the symmetric group G = Σ4, which has order |G| = 24. We recall
that the cycle-type of a permutation of n letters is the partition of n obtained from
counting the number of elements in cycles.

Lemma 14. The map that to a permutation σ ∈ Σn assigns its cycle type induces a
bijection of the set of conjugacy classes of elements in Σn onto the set of cycle-types
of permutations of n letters.

Proof. Indeed, a conjugation of a permutation corresponds to a relabelling of the
elements in {1, 2, . . . , n}. �

For n = 4, there are five cycle-types, namely

1 + 1 + 1 + 1, 2 + 1 + 1, 2 + 2, 3 + 1, and 4,

and the permutations

e, (12), (12)(34), (123), and (1234)

2 If instead the characteristic of k were a prime number `, then the identity in k[G] would only

determine the congruence classes of the integers m1, . . . ,mq modulo `.
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represent the corresponding conjugacy classes of elements in G = Σ4. Hence,

dimC(Z(C[G])) = 5,

and there are five isomorphism classes of irreducible complex representations of G.
We know three of these already, namely,

(i) the 1-dimensional trivial representation π1 = τ ,
(ii) the 1-dimensional sign representation π2 = sgn, and
(iii) the 3-dimensional representation π3 of G on

V3 = {x ∈ C4 | z1 + z2 + z3 + z4 = 0} ⊂ C4

defined by

π3(σ)(


z1
z2
z3
z4

) =


zσ(1)
zσ(2)
zσ(3)
zσ(4)

 .

By Addendum 4, the dimensions n4 and n5 of the remaining two irreducible complex
representations π4 and π5 satisfy

24 = 12 + 12 + 32 + n24 + n25,

which implies that n4 = 3 and n5 = 2. We claim that

π4 ' π2 ⊗ π3.

To prove this, we must show that π2 ⊗ π3 is irreducible and not isomorphic to π3.
Now, the representation π2 ⊗ π3 is irreducible, because

sgn⊗ π2 ⊗ π3 = sgn⊗ sgn⊗ π3 ' π3,

and because π3 is irreducible, and to show that π2 ⊗ π3 is not isomorphic to π3, it
suffices by Corollary 13 to show that

χπ2⊗π3
= χπ2

· χπ3
= sgn ·χπ3

6= χπ3
.

To prove this, it will suffice to find σ ∈ G such that sgn(σ) = −1 and χπ3
(σ) 6= 0.

To this end, we consider π = π1 ⊕ π3, which has

χπ = χπ1 + χπ3 = 1 + χπ3 .

But π is isomorphic to the standard permutation representation of G on C4, so the
matrix that represents π((12)) with respect to the standard basis of C4 is

A((12)) =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 ,

so χπ((12)) = 2, which shows that χπ3((12)) = 1 6= 0 as desired. This proves the
claim that π4 ' π2 ⊗ π3.

What about the remaining 2-dimensional irreducible complex representation π5?
In general, for every set X, there is a group homomorphism

Aut(X)
ιX // Aut(P(X))
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from the group of permutations of the set X to the group of permutation of its
power set P(X) defined by

ιX(σ)(U) = {σ(x) ∈ X | x ∈ U} ⊂ X.
Hence, given a (left) action ρ : G → Aut(X) by a group G on a set X, we get the
induced action ιX ◦ ρ : G→ Aut(P(X)) of G on P(X). We let X = {1, 2, 3, 4}, and
let ρ : G→ Aut(X) be the identity map and consider the action

G Aut(P(P(X)))
ιP(X)◦ιX◦ρ

//

on the iterated power set P(P(X)). It leaves the subset

Y = {{{1, 2}, {3, 4}}, {{1, 3}, {2, 4}}, {{1, 4}, {2, 3}}} ⊂ P(P(X))

with three elements invariant, so we obtain a group homomorphism

G
p
// Aut(Y ) ' Σ3.

Clearly, the kernel of p is the (necessarily normal) subgroup

N = {e, (12)(34), (13)(24), (14)(23)} ⊂ G,
so comparing orders, we conclude that p is surjective. Hence, the 2-dimensional
irreducible complex representation (V, π) of Σ3 defines the 2-dimensional irreducible
complex representation (V, π ◦ p) of G, and this is π5.

Remark 15. Geometrically, we can picture the group homomorphism

G
p
// Aut(Y )

above as follows. We may view G as the group of symmetries of the tetrahedron

•
•

•

•

It has 6 edges, and hence, 3 pairs of an edge and its opposing edge. Now the map
p takes a permutation of the 4 vertices to the induced permutation of these 3 pairs
of opposing edges.
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