SCHUR ORTHOGONALITY

TRANSITIVE GROUP ACTIONS

Before we get to Schur orthogonality, we will finish some left-over business from
last week. We recall that a left G-set is defined to be a pair (X, p) of a set X and
a group homomorphism p: G — Aut(X), and we say that p is a left action by G
on X. As is common, we will abbreviate and write ¢ - « or simply gz for p(g)(z),
where g € G and z € X. We define the isotropy subgroup (or stabilizer) at x € X
for the left action by G on X to be the subgroup

Gy, ={9€Glgz=1z}CQG,
and we define the orbit through x € X of the left action by G on X to be the subset
G rz={greX|geG} CX.

Moreover, there is a well-defined bijection
GGy 225G x

from the set of left cosets of the isotropy subgroup G, C G, which is typically not
normal, and onto the orbit G -z C X defined by p,(hG,) = hx. The map p, is
equivariant with respect to the action of G on G/G,, by left multiplication and by
the action of G on G - C X obtained by restriction of the action by G on X.
Indeed, given hG, € G/G, and g € G, we find that

Pa(9 - hGa) = pe(ghGa) = gh v =g he = g ps(hGy)
as required. The orbits of the action by G on X are the equivalence classes of the

equivalence relation R C X x X defined by the image of the map

Gx X" Ly wx

where p: G x X — X is given by pu(g,x) = p(g)(z), and where p: G x X — X is
the canonical projection. We write

G\X={G - zeP(X)|ze X}

for the set of orbits. If there is only one orbit, in which case G\X = {X}, then we
say that the action by G on X is transitive. Equivalently, the action by G on X is
transitive if for all x,y € X, there exists g € G such that y = gx.

If two elements x,y € X belong to the same orbit for the left action by G on X,
then their isotropy subgroups G, Gy C G are conjugate, albeit not canonically so.
Indeed, if we choose g € G such that y = gz, then the map

G, — G,

defined by ¢, (h) = ghg™! is a group isomorphism. We remark that this isomorphism
depends on the choice of g € G with y = gz.
1



If H C G is a subgroup, then we define the subset of H-fixed points for the left
action by G on X to be the subset

H_fyreX|hr=xforallhe H} C X.

It is generally not a G-invariant subset, so the action by G on X does generally not
restrict to an action by G on X*. However, we claim that the action by G on X
restricts to an action by the normalizer subgroup

Ng(H)={g9eG|gHg ' cH} C G

on X Indeed, if g € Ng(H), then for all h € H, there exists some h’ € H such
that hg = gh’, and therefore, if x € X, then hgr = gh’x = gx, which shows that
also gr € X Let pyr: Ng(H) — Aut(X*) denote this action. By definition, this
group homomorphism maps every element of H C Ng(H) to the identity map of
XH 5o it factors (uniquely) as the composition

4>Aut XH)

of the canonical projection py of Ng (H ) onto the quotient
We(H) = Ne(H)/H

and a left action pg of Wg(H) on X*. The group Wg(H) is called the Weyl group
of H in G.

Ezample 1. 1) The group G = O(3) of orthogonal 3 x 3-matrices acts on
S?2={xcR®||z|=1}CR?
by left multiplication. The action is transitive, and the “North Pole”

0
z=|[0]es?
1

has isotropy subgroup

Gw:{(g ‘1)) 60(3)|Q60(2)}CG.

Hence, writing G = O(2), by abuse of notation, we have a canonical bijection

0(3)/0(2) -2 §2.
This bijection is in fact a homeomorphism.

(2) Let k be a field. The action by GL,, (k) on My, (k) be left multiplication is
not transitive, except in trivial cases. The theorem in linear algebra, which we call
Gauss elimination, states that the map

{A € My, (k) | A is on reduced echelon form} —— GL,, (k)\ M, » (k)

that to A assigns the orbit GL,,(k) - A is a bijection. Indeed, we learn in linear

algebra that two matrices B,C' € M,, (k) belong to the same orbit for the action

by GL,, (k) on M, »(k) if and only if B can be transformed to C' by means of row
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operations, and that every orbit for the action by GL,, (k) on M, (k) contains
exactly one matrix on reduced echelon form.*

Let G be a group. If H C G is a subgroup, then the action by G on G/H by
left multiplication is transitive, and conversely, if a left action by G on a set X is
transitive, then we have the G-equivariant bijection p, : G/G, — X, once we choose
an element x € X. So every transitive left G-set is non-canonically isomorphic to
G/H for some subgroup H C G. Let k be a field. By analogy with the two-sided
regular representation of G X G on k[G], we have the k-linear representation

We(H) x G —"— GL(k[G/H])

defined by

plg1H, g2)(f)(9H) = f(95 ' 991 H).
Moreover, from the general discussion above, we find that the two-sided regular
representation of G X G on k[G] restricts to a k-linear representation

We(H) x G —2— GL(k[G)H*{e}),
where we use that the canonical projection

ngg(H X {e}) E—d Wg(H) x G

is an isomorphism of groups. This representation is given by

p(g1H, g2)(f)(9) = f(g5 ' 991)-

In this situation, we have the following result.

Lemma 2. Let p: G — G/H be the canonical projection. The map

kG H] =2 k|G e}

defined by p*(f) = f op is a k-linear isomorphism that is intertwining with respect
to p and p.

Proof. The right-hand side is the set consisting of the functions f: G — k such that
f(gh) = f(g) for all g € G and h € H. But for every such function, there exists a

unique function f: G/H — k such that f = fop. So the map p* is a bijection, and
it is clear that it is k-linear and intertwining with respect to p and p. (|

If H C G is a subgroup of a group G, and if (V, ) is a k-linear representation of
G, then we write (VH 7!) for the k-linear representation of W (H) on V| where

We(H) —s GL(VH)

is given by 7 (gH)(z) = 7(g)(x).

1 Challenge problem: Let A € Mmyn(k) be a matrix on reduced echelon form. Determine the
isotropy subgroup GL, (k)4 C GLm (k).
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Theorem 3. Let G be a finite group, let H C G be a subgroup, and let k be an
algebraically closed field of characteristic zero. Let (Vi,m1), ..., (Vy, mq) be represen-
tatives of the isomorphism classes of the irreducible k-linear representations of G.
In this situation, the isomorphism

7r1®7rf€9‘~~@7rq®7r;L>Reg

of k-linear representations of G x G restricts to an isomorphism

Hx{e}

Wf@ﬁf@"'@ﬂf&ﬂzu—>Reng{e}

of k-linear representations of We(H) x G.

Proof. In general, if T is a group and K C T is a subgroup, then an isomorphism of
k-linear representations of I' induces an isomorphism of the k-linear representations
of Wr(K) obtained by taking K-fixed points. We apply this to I' = G x G and
K = H x {e}. O

Let G be a finite group, and let (X, p) be a transitive left G-set. We will use
Theorem 3 to determine the structure of the left regular representation

G —Es k[X]
which, we recall, is given by L(g)(f)(x) = f(p(g9)~(z)).

Corollary 4. Let G be a finite group, let (X, p) be a transitive left G-set, and
let H= G, C G be the isotropy subgroup of an element x € X. Let k be an
algebraically closed field of characteristic zero, let (V1,m1), ..., (Vy,mq) be represen-
tatives of the isomorphism classes of irreducible k-linear representations of G, and
let m; = dimg(V;H). In this situation, there exists a non-canonical isomorphism

L~@i, ="
with L: G — GL(k[X]) the left regular representation of G on k[X].

Proof. The map p,: G/H — X defined by p,(gH) = gz is an isomorphism of left
G-sets. Moreover, Lemma 2 and Theorem 3 give k-linear isomorphisms

K[G/H] —2 RG]} e @ VI V7,

which are intertwining with respect to the respective representations of the group
Wa(H) x G on these k-vector spaces. In particular, they are also intertwining with
respect to the subgroup G = {H} x G C Wg(H) x G. Therefore, we conclude
that the representation 7} appears with multiplicity dimy(7#) in L. But the dual
representations 7j,...,m; also form a set of representatives of the isomorphism
classes of irreducible k-linear representations of G, so we may equivalently conclude
that the representation m; appears with multiplicity dimy((7})#) in L. Thus, it

remains to prove that dimy((7})) and dimy(77) are equal.

More generally, for every finite dimensional k-linear representation (V, ) of G,
we will prove that dimy,((V*)#) = dimy, (V). The composition
H—— G—"— GL(V)
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of the canonical inclusion and the representation 7 is a finite dimensional k-linear
representation of H, and hence, it decomposes as a sum

Tt @@y
of irreducible k-linear representations of H. It follows that
T ()™ @@ ()™

Exactly one of p1, ..., p, is a trivial (1-dimensional) representation of H, and exactly
one of pi,...,pk is a trivial (1-dimensional) representation of H. Moreover, p; is
trivial if and only if p} is trivial. Reordering, if necessary, we can assume that p;
and pj are trivial. But then
H * *\ H
m et e ()T e (7))
so their dimensions agree, as we wanted to show. O

Remark 5. In addition to the choice of an element x € X, the isomorphism in
Corollary 4 depends on a choice of basis of V;¥ for all 1 < i < ¢, and therefore, it
is non-canonical.

SCHUR ORTHOGONALITY

We now let ¥ = C be the complex numbers and continue to let G be a finite
group. Given a finite dimensional complex representation of G, we have defined the
associated subspace of matrix coefficients

M(r) c C[G]

to be the common image of the maps u, and p/ in the diagram

V) —" g
VeVv*

which are defined by pu.(x®p) = o(m(g)(x)) and p!.(h)(g) = tr(7(g) oh). The map
ay in the diagram is defined by ay (x ® ¢)(y) = - ¢(y) and is an isomorphism.
We also saw that if (vq,...,v,) is a basis of V and (v},...,v}) is the dual basis
of V*, then the family (ur(v; ® v]))1<ij<n always generates M (w), and if 7 is

irreducible, then the family is a basis of M ().

Endc

Let (—, —) be a hermitian inner product on V. I will use the convention that

(mz,yw) =z <ac,y)~w,
which is the opposite of the convention used in the book. It determines and is
determined by the C-linear isomorphism
VLt
defined by b(x)(y) = (x,y). So we may also identify M (7w) C C[G] with the image
of the composite map

VeV L% ve v,
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which is given by

(no (Va@b)(zay)g) =0by)(r(9)(x) = (y,7(9)(®)).

So if (v1,...,v,) is a basis of V that is orthonormal with respect to (—, —), then
the matrix A(g) = (a;;(9)) € M, (C) that represents m(g): V — V with respect
to this basis has entries given by

aij(g) = (vi, m(g9)(vy)).
The hermitian inner product (—, —) on V gives rise to a hermitian inner product
(—, —)Frob on Endc(V) called the Frobenius inner product. To define it, we recall

that given a complex linear map h: V — V, its adjoint with respect to (—, —) is
the unique complex linear map h*: V' — V such that

(h*(x),y) = (=, h(y))
for all ,y € V. Equivalently, the adjoint with respect to (—, —) is the unique
complex linear map h*: V — V that makes the diagram

VL

Jh* J{h*

V—Lsyr
commute. Here, the right-hand vertical map is given by h*(¢)(x) = ¢(h(x)). Now,
for hy, he € End¢(V), the Frobenius inner product is defined by

(h1, h2)Frob = tr(h] o ha).

It is a hermitian inner product, which, we stress, depends on the choice of the
hermitian inner product (—,—) on V.

Definition 6. Let G be a finite group. The Schur inner product on C[G] is the
hermitian inner product given by

(f1; f2)sen = il Z fi(g

geaG

It is straightforward to verify that the Schur inner product is invariant with
respect to the two-sided regular representation of G X G on C[G] in the sense that

(Reg(g1,92)(f1), Reg(g1, 92)(f2))sen = (f1, f2)sen
for all (g1,92) € G x G and fi, fo € C[G].
Theorem 7 (Schur orthogonality). Let G be a finite group.

(a) If m and mo are non-isomorphic irreducible complex representations of G,
then their subspaces of matrix coefficients
M(m), M (ms) C C[G]
are orthogonal with respect to the Schur inner product.

(b) If (V, ) is an irreducible complex representation of G that is unitary with
respect to an hermitian inner product (—,—) on 'V, then

1
(e (h), pi (h2))sen = — (h1, h2)Frob

for all hy, he € Endc(V), where n = dime(V).
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Proof. (a) We wish to prove that the composition

M(m) —— C[G] —*

M ()

of the canonical inclusion and the orthogonal projection with respect to the Schur
inner product (—, —)sep is the zero map. But the map is intertwining with respect to
Regas(r,) and Regyy(r,), and we have proved before that, as complex representations
of G x G, Regy(r,) and Regy;(,,) are irreducible and non-isomorphic. So Schur’s
lemma proves that the map is zero, as desired.

(b) The representation 7: G — GL(V') gives rise to a representation
G x G —2— GL(Endc(V))

defined by p(g1,92)(h) = 7(g1) o hom(g2)~t, and we claim that the map

Endc (V) — C[G]
is intertwining between p and Reg. Indeed, we have
1 (p(g1, 92)(h))(9) = tr(m(g) o m(g1) 0 hom(g2) ™)
= tr(m(g2) " om(g) om(g1) 0 h)
(

= tr(m(g5 '991) o h)
:Reg(gl,QQ)( =(R))(9).

Since 7 is irreducible, the map p. is injective, and hence, defines an isomorphism

Ende (V) — M(r)

that is intertwining between p and Regps(r). Now, we have two hermitian inner
products on End¢(V'), namely, the Frobenius inner product (—, —)gop and, via the
isomorphism /., the Schur inner product (—, —)§, defined by

(h1,h2)sen = (i (ha), pir (ha2)),

and both are p-invariant. But p ~ 7 X 7* is irreducible, so Theorem 12 in Lecture 6
shows that there exists a positive real number ¢ such that

<h1? h2>’Sch =cC- <h’17 h’2>Fl‘0b

for all hy, he € Endc(V). It remains to determine the constant c.

We choose a basis (v1,...,v,) of V that is orthonormal with respect to the given
hermitian inner product. Since 7 is unitary with respect to (—, —), the matrix
A(g) = (ai;(g)) € My (C)
that represents m(g): V' — V with respect to the basis (vi,...,v,) is a unitary

matrix. Therefore, we find that

<a13aakl Sch — ‘G| Z az] ak:l g |G| Z a]z ak:l g)
9€G g€eG
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where the second identity holds, because the matrix A(g) is unitary. This formula
gives us the idea to consider the sum

Z (v (v; @ v7),av (0 @ 0]))sa = Y (i(v) © V7). ir (01 ® ) )scn

1<i<n 1<i<n
| | § § agz a/zl | E E agz azl g) = 051,
1<i<n geG geG 1<i<n

where the last identity holds, because A(g~!) = A(g)~!. By comparison,
Z (ay(v; ®v]), oy (Vi @ V]))Frob = Z tr(ay (v; @ v))* oay (v ®v)))

1<i<n 1<i<n
= Z tr(av(vi®v;)oav(vl®vf)) = Z 6jl :71'(5]'[,
1<i<n 1<i<n

so we find that ¢ = %, as stated. Let us explain the second and third identity in

this calculation. The matrix B that represents oy (v; ®v}): V — V with respect to
the basis (v1,...,v,) has only one nonzero entry, namely, b;; = 1. Since the basis
(v1,...,v,) is orthonormal with respect to (—, —), the matrix that represents the
adjoint map ay (v; @ v})*: V — V with respect to this basis is the adjoint matrix
C = B*, whose only nonzero entry is c;; = 1. Similarly, the only nonzero entry in
the matrix D that represents ay (v; ® v}) with respect to (vy,...,v,) is dy = 1.
Finally, the matrix that represents ay (v; @ v})*ocay (v;®v}): V — V with respect
to the basis (v1,...,v,) is F' = C - D, whose only nonzero entry is f;; = 1, so its
trace is indeed d;; as stated. O

Corollary 8. Let G be a finite group, and let Z(C[G]) C C[G] be the sub-C-vector
space consisting of the central functions. If my,...,m, are representatives of the
irreducible complex representations of G, then the basis of Z(C[G]) given by the
family of their characters (Xx,,...,Xx,) i orthonormal with respect to the Schur
inner product.

Proof. Theorem 7 (a) is precisely the statement that (xn,,...,Xr,) is orthogonal
with respect to the Schur inner product. Moreover, we have,

. . 1. .

O X Dsen = (e, (1dva), iz, (v ) sen = —(idvy, idv; o,
(3
where the second identity is Theorem 7 (b), and by definition
<id% 5 idVi>Frob = tr(id% o id%) = tI‘(idVL. o idVL-) = tl"(idvi) = Nn,,

which shows that (X, Xx;)sech = 1, as desired. O

Corollary 9. Let G be a finite group, and let mi,..., 7, be representatives of the
irreducible complex representations of G. If (V, ) is any finite dimensional complex
representation of G, then there is a non-canonical isomorphism

ﬂzﬂ-;nl @...@ﬂ-;n'q’
where m; = (X, X, )Sch-
Proof. By Corollary 13 from Lecture 7, it suffices to show that

Xr =MiXn + -+ MgXn,

with m; as stated. But this follows immediately from Corollary 8. O
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