
SCHUR ORTHOGONALITY

Transitive group actions

Before we get to Schur orthogonality, we will finish some left-over business from
last week. We recall that a left G-set is defined to be a pair (X, ρ) of a set X and
a group homomorphism ρ : G → Aut(X), and we say that ρ is a left action by G
on X. As is common, we will abbreviate and write g · x or simply gx for ρ(g)(x),
where g ∈ G and x ∈ X. We define the isotropy subgroup (or stabilizer) at x ∈ X
for the left action by G on X to be the subgroup

Gx = {g ∈ G | gx = x} ⊂ G,

and we define the orbit through x ∈ X of the left action by G on X to be the subset

G · x = {gx ∈ X | g ∈ G} ⊂ X.

Moreover, there is a well-defined bijection

G/Gx
px // G · x

from the set of left cosets of the isotropy subgroup Gx ⊂ G, which is typically not
normal, and onto the orbit G · x ⊂ X defined by px(hGx) = hx. The map px is
equivariant with respect to the action of G on G/Gx by left multiplication and by
the action of G on G · x ⊂ X obtained by restriction of the action by G on X.
Indeed, given hGx ∈ G/Gx and g ∈ G, we find that

px(g · hGx) = px(ghGx) = gh · x = g · hx = g · px(hGx)

as required. The orbits of the action by G on X are the equivalence classes of the
equivalence relation R ⊂ X ×X defined by the image of the map

G×X X ×X
(µ,p)

//

where µ : G ×X → X is given by µ(g, x) = ρ(g)(x), and where p : G ×X → X is
the canonical projection. We write

G \X = {G · x ∈ P(X) | x ∈ X}

for the set of orbits. If there is only one orbit, in which case G \X = {X}, then we
say that the action by G on X is transitive. Equivalently, the action by G on X is
transitive if for all x, y ∈ X, there exists g ∈ G such that y = gx.

If two elements x, y ∈ X belong to the same orbit for the left action by G on X,
then their isotropy subgroups Gx, Gy ⊂ G are conjugate, albeit not canonically so.
Indeed, if we choose g ∈ G such that y = gx, then the map

Gx
cg
// Gy

defined by cg(h) = ghg−1 is a group isomorphism. We remark that this isomorphism
depends on the choice of g ∈ G with y = gx.
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If H ⊂ G is a subgroup, then we define the subset of H-fixed points for the left
action by G on X to be the subset

XH = {x ∈ X | hx = x for all h ∈ H} ⊂ X.
It is generally not a G-invariant subset, so the action by G on X does generally not
restrict to an action by G on XH . However, we claim that the action by G on X
restricts to an action by the normalizer subgroup

NG(H) = {g ∈ G | gHg−1 ⊂ H} ⊂ G
on XH . Indeed, if g ∈ NG(H), then for all h ∈ H, there exists some h′ ∈ H such
that hg = gh′, and therefore, if x ∈ XH , then hgx = gh′x = gx, which shows that
also gx ∈ XH . Let ρH : NG(H)→ Aut(XH) denote this action. By definition, this
group homomorphism maps every element of H ⊂ NG(H) to the identity map of
XH , so it factors (uniquely) as the composition

NG(H)

WG(H)

Aut(XH)
ρH //

pH

��

ρ̄H

@@

of the canonical projection pH of NG(H) onto the quotient

WG(H) = NG(H)/H

and a left action ρ̄H of WG(H) on XH . The group WG(H) is called the Weyl group
of H in G.

Example 1. 1) The group G = O(3) of orthogonal 3× 3-matrices acts on

S2 = {x ∈ R3 | ‖x‖ = 1} ⊂ R3

by left multiplication. The action is transitive, and the “North Pole”

x =

0
0
1

 ∈ S2

has isotropy subgroup

Gx =

{(
Q 0
0 1

)
∈ O(3) | Q ∈ O(2)

}
⊂ G.

Hence, writing Gx = O(2), by abuse of notation, we have a canonical bijection

O(3)/O(2)
px // S2.

This bijection is in fact a homeomorphism.

(2) Let k be a field. The action by GLm(k) on Mm,n(k) be left multiplication is
not transitive, except in trivial cases. The theorem in linear algebra, which we call
Gauss elimination, states that the map

{A ∈Mm,n(k) | A is on reduced echelon form} // GLm(k)\Mm,n(k)

that to A assigns the orbit GLm(k) · A is a bijection. Indeed, we learn in linear
algebra that two matrices B,C ∈Mm,n(k) belong to the same orbit for the action
by GLm(k) on Mm,n(k) if and only if B can be transformed to C by means of row
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operations, and that every orbit for the action by GLm(k) on Mm,n(k) contains
exactly one matrix on reduced echelon form.1

Let G be a group. If H ⊂ G is a subgroup, then the action by G on G/H by
left multiplication is transitive, and conversely, if a left action by G on a set X is
transitive, then we have the G-equivariant bijection px : G/Gx → X, once we choose
an element x ∈ X. So every transitive left G-set is non-canonically isomorphic to
G/H for some subgroup H ⊂ G. Let k be a field. By analogy with the two-sided
regular representation of G×G on k[G], we have the k-linear representation

WG(H)×G
ρ̄
// GL(k[G/H])

defined by

ρ̄(g1H, g2)(f̄)(gH) = f̄(g−1
2 gg1H).

Moreover, from the general discussion above, we find that the two-sided regular
representation of G×G on k[G] restricts to a k-linear representation

WG(H)×G
ρ
// GL(k[G]H×{e}),

where we use that the canonical projection

WG×G(H × {e}) // WG(H)×G

is an isomorphism of groups. This representation is given by

ρ(g1H, g2)(f)(g) = f(g−1
2 gg1).

In this situation, we have the following result.

Lemma 2. Let p : G→ G/H be the canonical projection. The map

k[G/H]
p∗
// k[G]H×{e}

defined by p∗(f) = f ◦ p is a k-linear isomorphism that is intertwining with respect
to ρ̄ and ρ.

Proof. The right-hand side is the set consisting of the functions f : G→ k such that
f(gh) = f(g) for all g ∈ G and h ∈ H. But for every such function, there exists a
unique function f̄ : G/H → k such that f = f̄ ◦ p. So the map p∗ is a bijection, and
it is clear that it is k-linear and intertwining with respect to ρ̄ and ρ. �

If H ⊂ G is a subgroup of a group G, and if (V, π) is a k-linear representation of
G, then we write (V H , πH) for the k-linear representation of WG(H) on V H , where

WG(H)
πH // GL(V H)

is given by πH(gH)(x) = π(g)(x).

1Challenge problem: Let A ∈ Mm,n(k) be a matrix on reduced echelon form. Determine the

isotropy subgroup GLm(k)A ⊂ GLm(k).
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Theorem 3. Let G be a finite group, let H ⊂ G be a subgroup, and let k be an
algebraically closed field of characteristic zero. Let (V1, π1), . . . , (Vq, πq) be represen-
tatives of the isomorphism classes of the irreducible k-linear representations of G.
In this situation, the isomorphism

π1 � π∗1 ⊕ · · · ⊕ πq � π∗q
µ
// Reg

of k-linear representations of G×G restricts to an isomorphism

πH1 � π∗1 ⊕ · · · ⊕ πHq � π∗q RegH×{e}
µH×{e}

//

of k-linear representations of WG(H)×G.

Proof. In general, if Γ is a group and K ⊂ Γ is a subgroup, then an isomorphism of
k-linear representations of Γ induces an isomorphism of the k-linear representations
of WΓ(K) obtained by taking K-fixed points. We apply this to Γ = G × G and
K = H × {e}. �

Let G be a finite group, and let (X, ρ) be a transitive left G-set. We will use
Theorem 3 to determine the structure of the left regular representation

G
L // k[X]

which, we recall, is given by L(g)(f)(x) = f(ρ(g)−1(x)).

Corollary 4. Let G be a finite group, let (X, ρ) be a transitive left G-set, and
let H = Gx ⊂ G be the isotropy subgroup of an element x ∈ X. Let k be an
algebraically closed field of characteristic zero, let (V1, π1), . . . , (Vq, πq) be represen-
tatives of the isomorphism classes of irreducible k-linear representations of G, and
let mi = dimk(V Hi ). In this situation, there exists a non-canonical isomorphism

L '
⊕q

i=1 π
mi
i

with L : G→ GL(k[X]) the left regular representation of G on k[X].

Proof. The map px : G/H → X defined by px(gH) = gx is an isomorphism of left
G-sets. Moreover, Lemma 2 and Theorem 3 give k-linear isomorphisms

k[G/H]
p∗
// k[G]H×{e}

⊕q
i=1 V

H
i × V ∗i ,

µ
oo

which are intertwining with respect to the respective representations of the group
WG(H)×G on these k-vector spaces. In particular, they are also intertwining with
respect to the subgroup G = {H} × G ⊂ WG(H) × G. Therefore, we conclude
that the representation π∗i appears with multiplicity dimk(πHi ) in L. But the dual
representations π∗1 , . . . , π

∗
q also form a set of representatives of the isomorphism

classes of irreducible k-linear representations of G, so we may equivalently conclude
that the representation πi appears with multiplicity dimk((π∗i )H) in L. Thus, it
remains to prove that dimk((π∗i )H) and dimk(πHi ) are equal.

More generally, for every finite dimensional k-linear representation (V, π) of G,
we will prove that dimk((V ∗)H) = dimk(V H). The composition

H // G
π // GL(V )
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of the canonical inclusion and the representation π is a finite dimensional k-linear
representation of H, and hence, it decomposes as a sum

π ' ρm1
1 ⊕ · · · ⊕ ρmrr

of irreducible k-linear representations of H. It follows that

π∗ ' (ρ∗1)m1 ⊕ · · · ⊕ (ρ∗r)
mr .

Exactly one of ρ1, . . . , ρr is a trivial (1-dimensional) representation ofH, and exactly
one of ρ∗1, . . . , ρ

∗
r is a trivial (1-dimensional) representation of H. Moreover, ρi is

trivial if and only if ρ∗i is trivial. Reordering, if necessary, we can assume that ρ1

and ρ∗1 are trivial. But then

πH ' πm1
1 ' (π∗1)m1 ' (π∗)H ,

so their dimensions agree, as we wanted to show. �

Remark 5. In addition to the choice of an element x ∈ X, the isomorphism in
Corollary 4 depends on a choice of basis of V Hi for all 1 ≤ i ≤ q, and therefore, it
is non-canonical.

Schur orthogonality

We now let k = C be the complex numbers and continue to let G be a finite
group. Given a finite dimensional complex representation of G, we have defined the
associated subspace of matrix coefficients

M(π) ⊂ C[G]

to be the common image of the maps µπ and µ′π in the diagram

EndC(V ) C[G]

V ⊗ V ∗

µ′π //

αV
∼

``

µπ

>>

which are defined by µπ(x⊗ϕ) = ϕ(π(g)(x)) and µ′π(h)(g) = tr(π(g)◦h). The map
αV in the diagram is defined by αV (x ⊗ ϕ)(y) = x · ϕ(y) and is an isomorphism.
We also saw that if (v1, . . . ,vn) is a basis of V and (v∗1, . . . ,v

∗
n) is the dual basis

of V ∗, then the family (µπ(vj ⊗ v∗i ))1≤i,j≤n always generates M(π), and if π is
irreducible, then the family is a basis of M(π).

Let 〈−,−〉 be a hermitian inner product on V . I will use the convention that

〈x · z,y · w〉 = z̄ · 〈x,y〉 · w,

which is the opposite of the convention used in the book. It determines and is
determined by the C-linear isomorphism

V
b // V ∗

defined by b(x)(y) = 〈x,y〉. So we may also identify M(π) ⊂ C[G] with the image
of the composite map

V ⊗ V V⊗b
// V ⊗ V ∗

µπ // C[G],
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which is given by

(µ ◦ (V ⊗ b))(x⊗ y)(g) = b(y)(π(g)(x)) = 〈y, π(g)(x)〉.
So if (v1, . . . ,vn) is a basis of V that is orthonormal with respect to 〈−,−〉, then
the matrix A(g) = (aij(g)) ∈ Mn,n(C) that represents π(g) : V → V with respect
to this basis has entries given by

aij(g) = 〈vi, π(g)(vj)〉.
The hermitian inner product 〈−,−〉 on V gives rise to a hermitian inner product
〈−,−〉Frob on EndC(V ) called the Frobenius inner product. To define it, we recall
that given a complex linear map h : V → V , its adjoint with respect to 〈−,−〉 is
the unique complex linear map h∗ : V → V such that

〈h∗(x),y〉 = 〈x, h(y)〉
for all x,y ∈ V . Equivalently, the adjoint with respect to 〈−,−〉 is the unique
complex linear map h∗ : V → V that makes the diagram

V
b //

h∗

��

V ∗

h∗

��

V
b // V ∗

commute. Here, the right-hand vertical map is given by h∗(ϕ)(x) = ϕ(h(x)). Now,
for h1, h2 ∈ EndC(V ), the Frobenius inner product is defined by

〈h1, h2〉Frob = tr(h∗1 ◦ h2).

It is a hermitian inner product, which, we stress, depends on the choice of the
hermitian inner product 〈−,−〉 on V .

Definition 6. Let G be a finite group. The Schur inner product on C[G] is the
hermitian inner product given by

〈f1, f2〉Sch =
1

|G|
∑
g∈G

f1(g) f2(g).

It is straightforward to verify that the Schur inner product is invariant with
respect to the two-sided regular representation of G×G on C[G] in the sense that

〈Reg(g1, g2)(f1),Reg(g1, g2)(f2)〉Sch = 〈f1, f2〉Sch

for all (g1, g2) ∈ G×G and f1, f2 ∈ C[G].

Theorem 7 (Schur orthogonality). Let G be a finite group.

(a) If π1 and π2 are non-isomorphic irreducible complex representations of G,
then their subspaces of matrix coefficients

M(π1),M(π2) ⊂ C[G]

are orthogonal with respect to the Schur inner product.
(b) If (V, π) is an irreducible complex representation of G that is unitary with

respect to an hermitian inner product 〈−,−〉 on V , then

〈µ′π(h1), µ′π(h2)〉Sch =
1

n
· 〈h1, h2〉Frob

for all h1, h2 ∈ EndC(V ), where n = dimC(V ).
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Proof. (a) We wish to prove that the composition

M(π1)
i // C[G]

p
// M(π2)

of the canonical inclusion and the orthogonal projection with respect to the Schur
inner product 〈−,−〉Sch is the zero map. But the map is intertwining with respect to
RegM(π1) and RegM(π2), and we have proved before that, as complex representations
of G × G, RegM(π1) and RegM(π2) are irreducible and non-isomorphic. So Schur’s
lemma proves that the map is zero, as desired.

(b) The representation π : G→ GL(V ) gives rise to a representation

G×G
ρ
// GL(EndC(V ))

defined by ρ(g1, g2)(h) = π(g1) ◦ h ◦ π(g2)−1, and we claim that the map

EndC(V )
µ′π // C[G]

is intertwining between ρ and Reg. Indeed, we have

µ′π(ρ(g1, g2)(h))(g) = tr(π(g) ◦ π(g1) ◦ h ◦ π(g2)−1)

= tr(π(g2)−1 ◦ π(g) ◦ π(g1) ◦ h)

= tr(π(g−1
2 gg1) ◦ h)

= Reg(g1, g2)(µ′π(h))(g).

Since π is irreducible, the map µ′π is injective, and hence, defines an isomorphism

EndC(V )
µ′π // M(π)

that is intertwining between ρ and RegM(π). Now, we have two hermitian inner

products on EndC(V ), namely, the Frobenius inner product 〈−,−〉Frob and, via the
isomorphism µ′π, the Schur inner product 〈−,−〉′Sch defined by

〈h1, h2〉′Sch = 〈µ′π(h1), µ′π(h2)〉,

and both are ρ-invariant. But ρ ' π�π∗ is irreducible, so Theorem 12 in Lecture 6
shows that there exists a positive real number c such that

〈h1, h2〉′Sch = c · 〈h1, h2〉Frob

for all h1, h2 ∈ EndC(V ). It remains to determine the constant c.

We choose a basis (v1, . . . ,vn) of V that is orthonormal with respect to the given
hermitian inner product. Since π is unitary with respect to 〈−,−〉, the matrix

A(g) = (aij(g)) ∈Mn(C)

that represents π(g) : V → V with respect to the basis (v1, . . . ,vn) is a unitary
matrix. Therefore, we find that

〈aij , akl〉Sch =
1

|G|
∑
g∈G

aij(g) akl(g) =
1

|G|
∑
g∈G

aji(g
−1) akl(g),
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where the second identity holds, because the matrix A(g) is unitary. This formula
gives us the idea to consider the sum∑

1≤i≤n

〈αV (vj ⊗ v∗i ), αV (vl ⊗ v∗i )〉′Sch =
∑

1≤i≤n

〈µπ(vj ⊗ v∗i ), µπ(vl ⊗ v∗i )〉Sch

=
1

|G|
∑

1≤i≤n

∑
g∈G

aji(g
−1)ail(g) =

1

|G|
∑
g∈G

∑
1≤i≤n

aji(g
−1)ail(g) = δjl,

where the last identity holds, because A(g−1) = A(g)−1. By comparison,∑
1≤i≤n

〈αV (vj ⊗ v∗i ), αV (vl ⊗ v∗i )〉Frob =
∑

1≤i≤n

tr(αV (vj ⊗ v∗i )
∗ ◦ αV (vl ⊗ v∗i ))

=
∑

1≤i≤n

tr(αV (vi ⊗ v∗j ) ◦ αV (vl ⊗ v∗i )) =
∑

1≤i≤n

δjl = n · δjl,

so we find that c = 1
n , as stated. Let us explain the second and third identity in

this calculation. The matrix B that represents αV (vj⊗v∗i ) : V → V with respect to
the basis (v1, . . . ,vn) has only one nonzero entry, namely, bij = 1. Since the basis
(v1, . . . ,vn) is orthonormal with respect to 〈−,−〉, the matrix that represents the
adjoint map αV (vj ⊗ v∗i )

∗ : V → V with respect to this basis is the adjoint matrix
C = B∗, whose only nonzero entry is cji = 1. Similarly, the only nonzero entry in
the matrix D that represents αV (vl ⊗ v∗i ) with respect to (v1, . . . ,vn) is dil = 1.
Finally, the matrix that represents αV (vj⊗v∗i )

∗◦αV (vl⊗v∗i ) : V → V with respect
to the basis (v1, . . . ,vn) is F = C ·D, whose only nonzero entry is fjl = 1, so its
trace is indeed δjl as stated. �

Corollary 8. Let G be a finite group, and let Z(C[G]) ⊂ C[G] be the sub-C-vector
space consisting of the central functions. If π1, . . . , πq are representatives of the
irreducible complex representations of G, then the basis of Z(C[G]) given by the
family of their characters (χπ1

, . . . , χπq ) is orthonormal with respect to the Schur
inner product.

Proof. Theorem 7 (a) is precisely the statement that (χπ1
, . . . , χπq ) is orthogonal

with respect to the Schur inner product. Moreover, we have,

〈χπi , χπi〉Sch = 〈µ′πi(idVi), µ
′
πi(idVi)〉

′
Sch =

1

ni
〈idVi , idVi〉Frob,

where the second identity is Theorem 7 (b), and by definition

〈idVi , idVi〉Frob = tr(id∗Vi ◦ idVi) = tr(idVi ◦ idVi) = tr(idVi) = ni,

which shows that 〈χπi , χπi〉Sch = 1, as desired. �

Corollary 9. Let G be a finite group, and let π1, . . . , πq be representatives of the
irreducible complex representations of G. If (V, π) is any finite dimensional complex
representation of G, then there is a non-canonical isomorphism

π ' πm1
1 ⊕ · · · ⊕ πmqq ,

where mi = 〈χπ, χπi〉Sch.

Proof. By Corollary 13 from Lecture 7, it suffices to show that

χπ = m1χπ1
+ · · ·+mqχπq

with mi as stated. But this follows immediately from Corollary 8. �
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