
SIX-FUNCTOR FORMALISM FOR QCoh([G \X])

Let (V, π) be a k-linear representation representation of a group G. If f : G′ → G
is a group homomorphism, then the composite group homomorphism

G′
f
// G

π // GL(V )

defines a k-linear representation of G′ that we write f∗(π) and call the restriction
of π along f . We will show that, given a k-linear representation (V ′, π′) of G′,
there are two ways to produce a k-linear representation of G. We write f!(π

′) and
f∗(π

′) for these two k-linear representation of G and call them compact induction
of π′ along f and induction of π′ along f , respectively. However, to define and
understand these, it is better to first generalize our notion of k-linear representation.
So, in this lecture, I will assume some familiarity with categories, functors, natural
transformations, and adjunctions. We have already encountered these in Lecture 5,
when we discussed extension/restriction of scalars.

If G is a group, then we define a category BG, whose set of objects is the singleton
set 1 = {0}, and whose set of morphisms is

Map(0, 0) = G.

We define the composition of morphisms in the category BG to be the product of
these as elements of the group G, that is,

g ◦ h = gh,

and we define the identity morphism of the unique object 0 in the category BG to
be the identity element in the group G, that is,

id0 = e.

Let k be a field, and let Vectk be the category, whose set of objects is the set of
(small, right) k-vector spaces, and whose set of morphisms is the set of k-linear
maps between such k-vector spaces. Composition of morphisms is defined to be
composition of maps, and the identity morphism of V is defined to be the identity
map idV . Now, a k-linear representation (V, π) of G determines a functor

BG
π // Vectk

that to the unique object 0 assigns the k-vector space π(0) = V and that to the
morphism g : 0→ 0 assigns the k-linear map π(g) : V → V . Indeed, it is a functor,
since for all morphisms g, h : 0→ 0 in BG, we have

π(g ◦ h) = π(gh) = π(g) ◦ π(h),

and for the unique object 0 in BG, we have

π(id0) = π(e) = idV = idπ(0) .

Conversely, a functor π : BG→ Vectk determines a k-linear representation

G
π // GL(V ),
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where V = π(0), and where π(g) : V → V is the k-linear map π(g) : π(0) → π(0).
This map is invertible. Indeed, every morphism g : 0→ 0 in BG is an isomorphism,
and every functor takes isomorphisms to isomorphisms, but let us give the proof.
Let g : 0 → 0 be a morphism in BG. That h : 0 → 0 is an inverse of g means that
g ◦ h = id0 and h ◦ g = id0. Since π : BG→ Vectk is a functor, we have

π(g) ◦ π(h) = π(g ◦ h) = π(id0) = idπ(0),

π(h) ◦ π(g) = π(h ◦ g) = π(id0) = idπ(0),

which shows that π(g) ∈ GL(V ), as claimed.

We generalize this as follows. Let G be a group and recall that a left G-set is
defined to be a pair (X, ρ) of a set X and a group homomorphism

G
ρ
// Aut(X).

As we explained in the Lecture 8, we also write g · x or gx instead of ρ(g)(x) and
we say that G acts from the left on the set X. Given a left G-set (X, ρ), we define
a category called the translation groupoid of (X, ρ) and denoted

[G \X]

as follows. The set of objects is the set [G \X]0 = X, and the set of morphisms is
the set [G \X]1 = G×X. The source and target maps

[G \X]1
s //

t
// [G \X]0

are given by s(g, x) = x and t(g, x) = gx, respectively, and the identity map

[G \X]0
e // [G \X]1

is given by e(x) = (e, x). So, in other words, we view the pair (g, x) as a morphism
from x to gx, and we define the identity morphism of x to be the pair (e, x). The
composition of (g, hx) : hx→ ghx and (h, x) : x→ hx is (gh, x) : x→ ghx:

x

hx

ghx.

(h,x) 22 (g,hx)

��(gh,x)
//

In the case of the trivial action of G on the set 1 = {0}, we recover the category

BG = [G \1].

We now define a k-linear representation of [G \X] to be a functor

[G \X]
π // Vectk .

Such a functor assigns k-vector spaces and k-linear maps as indicated below.

x

hx

ghx

π(x)

π(hx)

π(ghx)

(gh,x)

��

(h,x)

��

(g,hx)
��

� π // π(gh,x)

��

π(h,x)

��

π(g,hx)
~~
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The category [G \X] is a simple example of what is called a stack, and a functor
π : [G \X]→ Vectk is also called a quasi-coherent sheaf on this stack. We write

QCoh([G \X]) = Fun([G \X],Vectk)

for the category, whose objects are the functors π : [G \X] → Vectk, and whose
morphisms are natural transformations between such functors. So a morphism

π
h // π′

is a family (hx)x∈X of k-linear maps

π(x)
hx // π′(x)

such that for every (g, x) ∈ G×X, the diagram

π(x)
hx //

π(g,x)

��

π′(x)

π′(g,x)

��

π(gx)
hgx
// π′(gx)

commutes. In particular, the category

Repk(G) = QCoh(BG) = QCoh([G \1 ])

is the category of k-linear representations and intertwining k-linear maps.

It happens rarely that categories are equal or even that they are isomorphic.
Being equal or being isomorphic are not good notions for categories. (In fact, they
are so-called “evil” notions, because they involve equality.) Instead, the notion of
equivalence is a good notion. A functor

D
F // C

is defined to be an equivalence, if there exists a functor

C
H // D

in the opposite direction and natural transformations

F ◦H idC

idD H ◦ F

ε //

η
//

such that for all c ∈ C and d ∈ D, the morphisms

(F ◦H)(c) idC(c) = c

d = idD(d) (H ◦ F )(d)

εc //

ηd //

in C and D, respectively, are isomorphisms. In this situation, we say that ε and η
are natural isomorphisms, and that H is a quasi-inverse of F . We note, however,
that H is *not* uniquely determined by F .
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Remark 1. If F : D→ C is an equilvance (of categories), then it is always possible
to choose H : C → D and ε : F ◦ H → idC and η : idD → H ◦ F such that the
following diagrams of natural transformations commute.

F

F ◦H ◦ F

F H

H ◦ F ◦H

H
idF //

F◦η
??

ε◦F

�� idH //

η◦H
??

H◦ε

��

In this situation, we say that ε and η satisfy the triangle identities and that the
quadruple (F,G, ε, η) is an adjoint equivalence from D to C.

Proposition 2. Let G be a group, and let (X, ρ) be a transitive left G-set. Let
x ∈ X, and let Gx ⊂ G be the isotropy subgroup. The canonical inclusion functor

BGx = [Gx\{x}]
i // [G \X]

is an equivalence.

Proof. To produce a quasi-inverse, we choose for all y ∈ X, an element hy ∈ G such
that y = hyx, and define

[G \X]
H // [Gx\{x}],

to be the functor given on objects and morphisms by

y

gy

x

x

(g,y)

��

(h−1
gy ghy,x)

��

� H //

We further define ε : i ◦H → id[G \X] and η : H ◦ i→ id[G \{x}] by

(i ◦H)(y) y

x y

εy
//

(hy,x)
//

x (H ◦ i)(x)

x x.

ηx //

(h−1
x ,x)

//

respectively. The family ε = (εy)y∈X is a natural transformation, since the diagram

x y

x gy

(hy,x)
//

h−1
gy ghy

��

(g,y)

��(hgy,x)
//

commutes for all (g, y) ∈ G×X, and similarly, the family η = (ηx)x∈{x} is a natural
transformation since the diagram

x x

x x

(h−1
x ,x)

//

(g,x)

��

(h−1
x ghx,x)

��(h−1
x ,x)

//

commutes for all g ∈ Gx. Both ε and η are automatically natural isomorphisms,
since all morphisms in [G \X] and [Gx\{x}] are isomorphisms. �
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A category G is defined to be a groupoid if all morphisms in G are isomorphisms.
The translation groupoid [G \X] of any left G-set (X, ρ) is indeed a groupoid.

Corollary 3. In the situation of Proposition 2, the restriction along i,

QCoh([G \X])
i∗ // QCoh([Gx\{x}]) = Repk(Gx),

which to π assigns π ◦ i, is an equivalence.

Proof. If H is a quasi-inverse of i, then H∗ is a quasi-inverse of i∗. �

Remark 4. Something better is true, namely, that, as opposed to the equivalence
i, the equivalence i∗ has a canonical quasi-inverse i! ' i∗ given by the left or right
Kan extension along i. Explicitly, the functors i! and i∗ are given by

i!(π)(y) ' lim−→(π | BGx ×[G \X] [G \X]/y)

' (
⊕

(h,x) : x→y π(x))/Gx

i∗(π)(y) ' lim←−(π | BGx ×[G \X] [G \X]y/)

' (
∏

(h,y) : y→x π(x))Gx .

It is the possibility of forming sums and products in Vectk, which we cannot do in
[G \X], that makes it possibly to define these functors.

Example 5. Let G be a group, and let H ⊂ G be a subgroup. The pair (X, ρ)
consisting of the set X = G/H of left cosets of H in G and the group homomorphism
ρ : G → Aut(X) defined by ρ(g)(g′H) = gg′H, is a transitive left G-set. If we use
Corollary 3 with x = H = eH ∈ G/H, then we find that

QCoh([G \(G/H)])
i∗ // Repk(H)

is an equivalence.

Let (X, ρ) be a left G-set, and let

X
p
// G \X

be the canonical projection onto the set of orbits. (We remark that

G \X ' π0([G \X])

is the set of isomorphism classes of objects in [G \X].) If we choose an element

x = s(x̄) ∈ x̄ = G · x ∈ G \X

in each orbit, then we obtain an isomorphism of left G-sets∐
x̄∈G \X G/Gx

// X

that to gGx assigns g · x. We note that this isomorphism is highly non-canonical,
since it depends on the choice a section s : G \X → X of p : X → G \X. Be that as
it may, given this choice, we obtain equivalences∐

x̄∈G \X BGx
//
∐
x̄∈G \X [G \(G/Gx)] // [G \X].

Finally, taking functors into Vectk, we obtain the following result.
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Proposition 6. Let G be a group, and let (X, ρ) be a left G-set. A choice of
representative x ∈ x̄ ∈ G \X of each orbit determines an equilvalence

QCoh([G \X]) //
∏
x̄∈G \X Repk(Gx).

In Proposition 6, the big advantage of the left-hand side is that it only depends
on the left G-set (X, ρ), whereas the right-hand side also depends on a choice1 of
section s : G \X → X of the canonical projection p : X → G \X. We are now ready
to define the compact induction and induction functors.

So let G be a group, and let f : Y → X be a G-equivariant map between left
G-sets X and Y . We do not assume that G, X, or Y is finite. It induces a functor

[G \Y ]
f
// [G \X],

which, by abuse of notation, we again denote by f , and that maps

y

gy

f(y)

f(gy)

(g,y)

��

(g,f(y))

��

� f
//

Since the map f : Y → X is G-equivariant, we have f(gy) = gf(y), so this functor
is well-defined. The functor f induces a functor

QCoh([G \X])
f∗
// QCoh([G \Y ])

that to π assigns π ◦ f and that we call the restriction along f . It admits both a
left adjoint functor f! and a right adjoint functor f∗ given by the left Kan extension
along f and the right Kan extension along f , respectively. We call the functor f!

compact induction along f , and we call the functor f∗ induction along f . We now
spell these out two functions out in detail. First, the functor

QCoh([G \Y ])
f! // QCoh([G \X])

is given by

f!(τ)(x)

⊕
f(y)=x τ(y)

f!(τ)(gx)

⊕
f(y)=x τ(gy),

f!(τ)(g,x)
//

⊕
τ(g,y)

//

where the two sums are indexed by

f−1(x) = {y ∈ Y | f(y) = x},
and where we use that, since f : Y → X is G-equivariant, we have⊕

f(y′)=gx τ(y′) =
⊕

f(y)=x τ(gy).

We define natural transformations ε = (επ) and η = (ητ ) with2

f!f
∗(π) π τ f∗f!(τ)

επ //
ητ //

1 In general, we need the axiom of choice to even know that it is possible to make this choice!
2We abbreviate and write f!f

∗ instead of f! ◦ f∗, etc.
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as follows. The k-linear map

f!f
∗(π)(x) π(x)

⊕
f(y)=x π(f(y)) π(x)

επ,x
//

∇ //

is the fold map (or co-diagonal), whose restriction to each summand is the identity
map of π(x) = π(f(y)), and the k-linear map

τ(y) f∗f!(τ)(y)

τ(y)
⊕

f(y′)=f(y) τ(y′)

ητ,y
//

iy
//

is the inclusion of the summand indexed by y. One verifies that ε and η are indeed
well-defined natural transformations and that the triangle identities

f!

f! f
∗f!

f! f∗

f∗f! f
∗

f∗
idf! //

f!η
??

εf!

�� idf∗
//

ηf∗
??

f∗ε

��

hold. As explained in Lecture 5, this immediately implies:

Theorem 7 (Frobenius reciprocity I). In the situation above, the maps

Map(f!(τ), π)
α //

Map(τ, f∗(π))
β
oo

defined by α(h) = f∗(h) ◦ ητ and β(k) = επ ◦ f!(k) are each other’s inverses.

Similarly, the functor

QCoh([G \Y ])
f∗ // QCoh([G \X])

is given by

f∗(τ)(x)

∏
f(y)=x τ(y)

f∗(τ)(gx)

∏
f(y)=x τ(gy),

f∗(τ)(g,x)
//

∏
τ(g,y)

//

where the products are indexed by f−1(x) as before. The natural transformations
ε = (ετ ) and η = (ηπ) with

f∗f∗(τ) τ π f∗f
∗(π)

ετ //
ηπ //

as follows. The k-linear map

f∗f∗(τ)(y) τ(y)

∏
f(y′)=f(y) τ(y′) τ(y)

ετ,y
//

py
//

7



is the projection on the factor indexed by y, and the k-linear map

π(x) f∗f
∗(π)(x)

π(x)
∏
f(y)=x π(f(y))

ηπ,x
//

∆ //

is given by the diagonal map. One verifies that ε and η are well-defined natural
transformations and that they satisfy the triangle identities:

f∗

f∗f∗f
∗

f∗ f∗

f∗f
∗f∗

f∗
idf∗

//

f∗η
??

εf∗

�� idf∗ //

ηf∗

??
f∗ε

��

This gives the following result:

Theorem 8 (Frobenius reciprocity II). In the situation above, the maps

Map(f∗(π), τ)
α //

Map(π, f∗(τ))
β
oo

defined by α(h) = f∗(h) ◦ ηπ and β(k) = ετ ◦ f∗(k) are each other’s inverses.

There is a canonical natural transformation called the norm map

f! f∗.
Nmf

//

In our description of f! and f∗, it is given by the canonical inclusion

f!(τ)(x) f∗(τ)(x)

⊕
f(y)=x τ(y)

∏
f(y)=x τ(y)

Nmf,τ,x
//

//

of the sum in the product. (But a better definition of Nmf is given in Lurie’s Higher
Algebra, Section 6.1.6.) We will say that a map f : Y → X is proper, if for all x ∈ X,
the inverse image f−1(x) ⊂ Y is finite.

Theorem 9. If f : Y → X is proper, then the norm map

f! f∗.
Nmf

//

is a natural isomorphism.

Proof. Indeed, finite sums and finite products of k-vector spaces agree. �

Finally, we will prove an important theorem called the base-change theorem. A
commutative diagram of left G-sets and G-equivariant maps

(10) Y ′
h′ //

f ′

��

Y

f

��

X ′
h // X
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induces a diagram of categories and functors

QCoh([G \Y ′]) QCoh([G \Y ])

QCoh([G \X ′]) QCoh([G \X])

h′∗oo

f ′∗

OO

f∗

OO

h∗oo

that commutes, up to unique natural isomorphism. The diagram (10) is defined to
be cartesian, if the map

Y ′ X ′ ×X Y = {(x′, y) ∈ X ′ × Y | h(x′) = f(y)} ⊂ X ′ × Y
(f ′,h′)

//

is a bijection. In this case, also the diagrams

QCoh([G \Y ′]) QCoh([G \Y ])

QCoh([G \X ′]) QCoh([G \X])

h′∗oo

f ′∗ (resp. f ′! )

��

f∗ (resp. f!)

��
h∗oo

commute, up to specified natural isomorphisms. Here is a precise statement:

Theorem 11 (Base-change). If a diagram of G-sets and G-equivariant maps as
in (10) is cartesian, then the following hold.

(1) The composite natural transformation

h∗f∗ f ′∗ f
′∗h∗f∗ ' f ′∗ h′∗f∗f∗ f ′∗ h

′∗ηh∗f∗ //
f ′∗h
′∗ε
//

is a natural isomorphism.
(2) The composite natural transformation

f ′! h
′∗ f ′! h

′∗f∗f! ' f ′! f ′∗h∗f! h∗f!

f ′! h
′∗η
//

εh∗f! //

is a natural isomorphimsm.

Proof. We first remark that (1) and (2) are in fact equivalent statements. Indeed,
the natural transformation h∗f∗ → f ′∗h

′∗ in (1), determines and is determined by a
natural transformation h′!f

′∗ → h!f
∗, which, up to interchanging the role of f and

h, precisely is the natural transformation in (2). So it suffices to prove (1). To this
end, let τ ∈ QCoh([G \Y ]), and let x′ ∈ X ′. On the one hand, we have

h∗f∗(τ)(x′) = f∗(τ)(h(x′)) =
∏
f(y)=h(x′) τ(y),

and, on the other hand, we have

f ′∗ h
′∗(τ)(x′) =

∏
f ′(y′)=x′ h

′∗(τ)(y′) =
∏
f ′(y′)=x′ τ(h′(y′)),

and since the diagram (10) is cartesian, the two products agree. Finally, one checks
that the composite map in the statement takes the factor indexed by (y, x′) with
f(y) = h′(x′) to the factor indexed by the unique y′ ∈ Y ′ such that f ′(y′) = x′ and
h′(y′) = y by the identity map

τ(y)
id // τ(h′(y′)).

So it is an isomorphism, which proves (1). �
9



In the next lecture, we consider the special case, where G is a finite group, where
H,K ⊂ G are two subgroups, and where (10) is the cartesian diagram

G/H ×G/K G/H

G/K G/G.

h′ //

f ′

��

f

��
h //

Here, f and h are the unique maps (note that G/G = {G} only has one element),
and h′ and f ′ are the canonical projections. The left G-sets G/H and G/K are
both transitive, but G/H × G/K is not, unless either H = G or K = G or both.
Proposition 6 gives a product decomposition of QCoh([G \(G/H × G/K)]), once
we fix a choice of representatives of the G-orbits in G/H × G/K. As we will see,
this turns out to be rather complicated!

Remark 12. The formulas for the left Kan extension f! and right Kan extension f∗
that we have given above are based on the fact that the diagram of anima3

Y [G \Y ]

X [G \X]

//

�� ��
//

is cartesian.

3 In Lurie’s Higher Topos Theory, anima are called “spaces.” However, since these are nothing
like topological spaces and are in fact discrete in nature, Clausen and Scholze have proposed to

use the name anima or animated sets instead.
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