

Algebra I/Introduction to Algebra V

Due: Please upload solutions to NUCT by Tuesday, July 13, 2021.

Problem 1. Let $k = \mathbb{R}$ (resp. \mathbb{C} , resp. \mathbb{H}), and let $\sigma: k \rightarrow k^{\text{op}}$ be the identity map (resp. complex conjugation, resp. quaternionic conjugation). We first consider $M_n(k)$ a right k -vector space with sum given by matrix sum and with right scalar multiplication given by $(x_{ij}) \cdot a = (x_{ij} \cdot a)$. The zero vector in this vector space is given by the zero matrix O .

(i) Show that the map $\langle -, - \rangle: M_n(k) \times M_n(k) \rightarrow k$ defined by

$$\langle X, Y \rangle = \text{tr}(X^*Y)$$

is a hermitian inner product on $M_n(k)$.

We next consider $M_n(k)$ a real vector space by restriction of scalars along $\mathbb{R} \rightarrow k$, and we consider the norm $\|X\| = \sqrt{\langle X, X \rangle}$ on this real vector space induced by the hermitian inner product in (i). We give each of the classical groups $G \subset M_n(k)$ ¹ the subspace topology induced by the metric topology on $M_n(k)$.

(ii) Show that each of the classical groups $G \subset M_n(k)$ is contained in the sphere of radius \sqrt{n} centered at O .
(iii) Show that each of the classical groups $G \subset M_n(k)$ is a closed subset of $M_n(k)$.
(iv) Conclude that each of the classical groups G is compact.

¹ For $G = O(n)$ or $SO(n)$, $k = \mathbb{R}$; for $G = U(n)$ or $SU(n)$, $k = \mathbb{C}$, and for $G = \text{Sp}(n)$, $k = \mathbb{H}$.